-
大小: 1.03MB文件類型: .rar金幣: 2下載: 0 次發布日期: 2023-10-03
- 語言: Matlab
- 標簽:
資源簡介
之前上傳過 《matlab 神經網絡的文字識別 有詳細注釋》這個貼,有人評論說 不會運行。 是樣本文件需要自己添加,特此 上傳樣本文件,方便大家。 所有文件放進一個工程,運行主程序即可!

代碼片段和文件信息
clear?all;
for?kk=0:109
?????p1=ones(1616);%初始化16×16的二值圖像像素值(全白)???
?????m=strcat(int2str(kk)‘.bmp‘);%?形成訓練樣本圖像的文件名(0~49.bmp)?
?????x=imread(m‘bmp‘);???%?讀入訓練樣本圖像文件???
?????bw=im2bw(x0.5);%?將讀入的訓練樣本圖像轉換為二值圖像??
?????[ij]=find(bw==0);%?尋找二值圖像中像素值為0(黑)的行號和列號??
?????imin=min(i);%?尋找二值圖像中像素值為0(黑)的最小行號?
?????imax=max(i);
?????jmin=min(j);
?????jmax=max(j);
?????bw1=bw(imin:imaxjmin:jmax);%?截取圖像像素值為0(黑)的最大矩形區域?
?????rate=16/max(size(bw1));%?計算截取圖像轉換為16×16的二值圖像的縮放比例
?????bw1=imresize(bw1rate);%?將截取圖像轉換為16×16的二值圖像(由于縮放比例??
???????????????????????????????%?大多數情況下不為16的倍數所以可能存在轉換誤差)?
?????[ij]=size(bw1);%?轉換圖像的大小
?????i1=round((16-i)/2);%?計算轉換圖像與標準16×16的圖像的左邊界差????
?????j1=round((16-j)/2);%?計算轉換圖像與標準16×16的圖像的上邊界差???
?????p1(i1+1:i1+ij1+1:j1+j)=bw1;%將截取圖形轉化為標準的16*16的標準型
?????p1=-1.*p1+ones(1616);%反色處理,
?????for?m=0:15
?????????p(m*16+1:(m+1)*16kk+1)=p1(1:16m+1);%輸入向量
?????end%?形成神經網絡目標向量?
?????switch?kk
?????????case?{0102030405060708090100}
?????????????t(kk+1)=0;
?????????case{1112131415161718191101}
?????????????t(kk+1)=1;
?????????case{2122232425262728292102}
?????????????t(kk+1)=2;
??????????case{3132333435363738393103}
?????????????t(kk+1)=3;
?????????case{4142434445464748494104}
?????????????t(kk+1)=4;
?????????case{5152535455565758595105}
?????????????t(kk+1)=5;
?????????????case{6162636465666768696106}
?????????????t(kk+1)=6;
?????????????case{7172737475767778797107}
?????????????t(kk+1)=7;
?????????????case{8182838485868788898108}
?????????????t(kk+1)=8;
?????????????case{9192939495969798999109}
?????????????t(kk+1)=9;
?????end
end
save?E52PT?p?t;
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件??????49206??2009-03-09?15:49??num\0.bmp
?????文件??????49206??2012-11-02?18:57??num\1.bmp
?????文件??????49206??2012-11-02?18:50??num\10.bmp
?????文件??????49206??2012-11-02?19:51??num\100.bmp
?????文件??????49206??2012-11-02?19:43??num\101.bmp
?????文件??????49206??2012-11-02?19:45??num\102.bmp
?????文件??????49206??2012-11-02?19:47??num\103.bmp
?????文件?????507694??2012-11-02?19:45??num\104.bmp
?????文件?????636934??2012-11-02?19:48??num\105.bmp
?????文件??????49206??2012-11-02?19:50??num\106.bmp
?????文件??????49206??2012-11-02?19:45??num\107.bmp
?????文件??????49206??2012-11-02?19:47??num\108.bmp
?????文件??????49206??2012-11-02?19:50??num\109.bmp
?????文件??????49206??2012-11-02?18:51??num\11.bmp
?????文件??????49206??2012-11-02?18:51??num\12.bmp
?????文件??????49206??2012-11-02?18:52??num\13.bmp
?????文件??????49206??2012-11-02?18:52??num\14.bmp
?????文件???????3626??2009-05-09?22:51??num\142.bmp
?????文件??????49206??2012-11-02?18:52??num\15.bmp
?????文件??????49206??2012-11-02?18:53??num\16.bmp
?????文件??????49206??2012-11-02?18:53??num\17.bmp
?????文件??????49206??2012-11-02?18:54??num\18.bmp
?????文件??????49206??2012-11-02?18:55??num\19.bmp
?????文件??????49206??2009-03-09?15:50??num\2.bmp
?????文件??????49206??2012-11-02?18:56??num\20.bmp
?????文件??????49206??2012-11-02?18:58??num\21.bmp
?????文件??????49206??2012-11-02?18:58??num\22.bmp
?????文件??????49206??2012-11-02?18:59??num\23.bmp
?????文件??????49206??2012-11-02?18:59??num\24.bmp
?????文件??????49206??2012-11-02?18:59??num\25.bmp
............此處省略98個文件信息
評論
共有 條評論