91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 8.84MB
    文件類型: .zip
    金幣: 2
    下載: 0 次
    發(fā)布日期: 2023-11-10
  • 語言: Matlab
  • 標簽: 機器視覺??

資源簡介

這是一個單人或多人口罩識別的應用,主要運用卷積神經網絡(lenet5)來進行判別,預期效果是若檢測到沒有人戴口罩則在屏幕實時顯示警報,并發(fā)出聲音提示。

資源截圖

代碼片段和文件信息

%%?準備工作空間
clc?
clear?all
close?all
%%?導入要訓練的數(shù)據
digitDatasetPath?=?fullfile(‘./‘?‘/HandWrittenDataset/‘);
imds?=?imageDatastore(digitDatasetPath‘IncludeSubfolders‘true‘LabelSource‘‘foldernames‘);
%?采用文件夾名稱作為數(shù)據標記,imageDatastore是一種數(shù)據的讀取方式,IncludeSubfolders:是否繼續(xù)讀取子文件夾下的圖像,‘LabelSource‘‘foldernames‘采用子文件的名字對數(shù)據經行標記
%‘ReadFcn‘@mineRF

%?查看imds數(shù)據集圖片個數(shù)
countEachLabel(imds)
numTrainFiles?=?17;%?每一個數(shù)字有22個樣本,取17個樣本作為訓練數(shù)據
[imdsTrainimdsValidation]?=?splitEachLabel(imdsnumTrainFiles‘randomize‘);%可選參數(shù)指定為‘隨機化’
%?查看圖片的大小,因為涉及到神經網絡的輸入程大小
img=readimage(imds1);
size(img)

%%?定義卷積神經網絡的結構Lenet5
layers?=?[
%?輸入層
imageInputlayer([200?200?3])%200指的是需要訓練的圖片寬高,RGB圖片,通道只有3
%?卷積層:提取底層特征
convolution2dlayer(56‘Padding‘2)
%卷積核大小5*5,提取6種特征映射,Padding在圖片邊緣進行補零操作以保證在這次卷積之后特征映射大小仍是28*28,計算方法為:28-5+4+1
batchNormalizationlayer
relulayer
%下采樣層,核大小為:2*2?平移不變性、防止過度擬合、減小數(shù)據維度
maxPooling2dlayer(2‘stride‘2)

convolution2dlayer(5?16)
batchNormalizationlayer
relulayer

maxPooling2dlayer(2‘stride‘2)

convolution2dlayer(5?120)
batchNormalizationlayer
relulayer
%?最終層
fullyConnectedlayer(9)%通過一個全連接層,將120個特征連接成9個輸出特征
%該層為了分類
softmaxlayer
classificationlayer];

%%?訓練神經網絡
%?設置訓練參數(shù)
options?=?trainingOptions(‘sgdm‘‘maxEpochs‘60?‘ValidationData‘?imdsValidation‘ValidationFrequency‘5‘Verbose‘false‘Plots‘‘training-progress‘);%?顯示訓練進度。
%sgdm最優(yōu)化的方法,60重復次數(shù),imdsValidation驗證集,5:驗證的頻率,‘Verbose‘false不顯示中間驗證的結果,training-progress‘顯示訓練進度


%?訓練神經網絡,保存網絡
ZQ=?trainNetwork(imdsTrain?layers?options);%參數(shù)分別為訓練數(shù)據、神經元設計、訓練參數(shù)
save?‘ZQ.mat‘?ZQ


?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2020-04-16?17:43??Design\HandWrittenDataset\
?????目錄???????????0??2020-04-16?17:43??Design\HandWrittenDataset\0\
?????文件????????4364??2020-04-12?07:59??Design\HandWrittenDataset\0\1.jpg
?????文件????????5799??2020-04-12?07:59??Design\HandWrittenDataset\0\10.jpg
?????文件????????6552??2020-04-12?07:59??Design\HandWrittenDataset\0\11.jpg
?????文件????????5723??2020-04-12?07:59??Design\HandWrittenDataset\0\12.jpg
?????文件????????5292??2020-04-12?07:59??Design\HandWrittenDataset\0\13.jpg
?????文件????????5338??2020-04-12?07:59??Design\HandWrittenDataset\0\14.jpg
?????文件????????5156??2020-04-12?07:59??Design\HandWrittenDataset\0\15.jpg
?????文件????????7121??2020-04-12?07:59??Design\HandWrittenDataset\0\16.jpg
?????文件????????6361??2020-04-12?07:59??Design\HandWrittenDataset\0\17.jpg
?????文件????????7426??2020-04-12?07:59??Design\HandWrittenDataset\0\18.jpg
?????文件????????4902??2020-04-12?07:59??Design\HandWrittenDataset\0\19.jpg
?????文件????????5805??2020-04-12?07:59??Design\HandWrittenDataset\0\2.jpg
?????文件????????5990??2020-04-12?07:59??Design\HandWrittenDataset\0\20.jpg
?????文件????????4945??2020-04-12?07:59??Design\HandWrittenDataset\0\21.jpg
?????文件????????5688??2020-04-12?07:59??Design\HandWrittenDataset\0\22.jpg
?????文件????????6052??2020-04-12?07:59??Design\HandWrittenDataset\0\3.jpg
?????文件????????7426??2020-04-12?07:59??Design\HandWrittenDataset\0\4.jpg
?????文件????????4196??2020-04-12?07:59??Design\HandWrittenDataset\0\5.jpg
?????文件????????6161??2020-04-12?07:59??Design\HandWrittenDataset\0\6.jpg
?????文件????????4418??2020-04-12?07:59??Design\HandWrittenDataset\0\7.jpg
?????文件????????6809??2020-04-12?07:59??Design\HandWrittenDataset\0\8.jpg
?????文件????????5286??2020-04-12?07:59??Design\HandWrittenDataset\0\9.jpg
?????目錄???????????0??2020-04-16?17:43??Design\HandWrittenDataset\1\
?????文件????????5255??2020-04-12?07:59??Design\HandWrittenDataset\1\1.jpg
?????文件????????4150??2020-04-12?07:59??Design\HandWrittenDataset\1\10.jpg
?????文件????????6620??2020-04-12?07:59??Design\HandWrittenDataset\1\11.jpg
?????文件????????4569??2020-04-12?07:59??Design\HandWrittenDataset\1\12.jpg
?????文件????????4297??2020-04-12?07:59??Design\HandWrittenDataset\1\13.jpg
?????文件????????4607??2020-04-12?07:59??Design\HandWrittenDataset\1\14.jpg
............此處省略184個文件信息

評論

共有 條評論