資源簡介
kalman工具箱 裝在matlab目錄下可直接運行 對于學習目標跟蹤很有用
代碼片段和文件信息
function?[FHQRinitx?initV]?=?AR_to_SS(coef?C?y)
%
%?Convert?a?vector?auto-regressive?model?of?order?k?to?state-space?form.
%?[FHQR]?=?AR_to_SS(coef?C?y)
%?
%?X(i)?=?A(1)?X(i-1)?+?...?+?A(k)?X(i-k+1)?+?v?where?v?~?N(0?C)
%?and?A(i)?=?coef(::i)?is?the?weight?matrix?for?i?steps?ago.
%?We?initialize?the?state?vector?with?[y(:k)‘?...?y(:1)‘]‘?since
%?the?state?vector?stores?[X(i)?...?X(i-k+1)]‘?in?order.
[s?s2?k]?=?size(coef);?%?s?is?the?size?of?the?state?vector
bs?=?s?*?ones(1k);?%?size?of?each?block
F?=?zeros(s*k);
for?i=1:k
???F(block(1bs)?block(ibs))?=?coef(::i);
end
for?i=1:k-1
??F(block(i+1bs)?block(ibs))?=?eye(s);
end
H?=?zeros(1*s?k*s);
%?we?get?to?see?the?most?recent?component?of?the?state?vector?
H(block(1bs)?block(1bs))?=?eye(s);?
%for?i=1:k
%??H(block(1bs)?block(ibs))?=?eye(s);
%end
Q?=?zeros(k*s);
Q(block(1bs)?block(1bs))?=?C;
R?=?zeros(s);
initx?=?zeros(k*s?1);
for?i=1:k
??initx(block(ibs))?=?y(:?k-i+1);?%?concatenate?the?first?k?observation?vectors
end
initV?=?zeros(k*s);?%?no?uncertainty?about?the?state?(since?perfectly?observable)
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件????????117??2009-03-26?16:53??KalmanAll\Kalman\aaa.asv
?????文件???????1107??2002-05-29?08:59??KalmanAll\Kalman\AR_to_SS.m
?????文件????????425??2002-05-29?08:59??KalmanAll\Kalman\convert_to_lagged_form.m
?????文件????????354??2002-05-29?08:59??KalmanAll\Kalman\ensure_AR.m
?????文件???????1045??2002-05-29?08:59??KalmanAll\Kalman\eval_AR_perf.m
?????文件???????3005??2009-03-26?16:53??KalmanAll\Kalman\kalman_filter.asv
?????文件???????3007??2009-03-26?20:29??KalmanAll\Kalman\kalman_filter.m
?????文件???????2392??2002-11-01?16:32??KalmanAll\Kalman\kalman_forward_backward.m
?????文件???????1584??2002-05-29?08:59??KalmanAll\Kalman\kalman_smoother.m
?????文件???????1872??2009-03-26?20:23??KalmanAll\Kalman\kalman_update.asv
?????文件???????1876??2009-03-26?20:24??KalmanAll\Kalman\kalman_update.m
?????文件???????1022??2002-10-23?08:17??KalmanAll\Kalman\learning_demo.m
?????文件????????819??2002-05-29?08:59??KalmanAll\Kalman\learn_AR.m
?????文件????????687??2002-05-29?08:59??KalmanAll\Kalman\learn_AR_diagonal.m
?????文件???????5515??2006-08-24?14:37??KalmanAll\Kalman\learn_kalman.m
?????文件????????485??2004-06-07?07:39??KalmanAll\Kalman\README.txt
?????文件????????535??2003-01-18?13:47??KalmanAll\Kalman\README.txt~
?????文件???????2039??2009-03-27?11:51??KalmanAll\Kalman\sample_lds.asv
?????文件???????2039??2009-03-27?11:53??KalmanAll\Kalman\sample_lds.m
?????文件???????1199??2002-05-29?08:59??KalmanAll\Kalman\smooth_update.m
?????文件????????579??2002-05-29?08:59??KalmanAll\Kalman\SS_to_AR.m
?????文件?????????28??2009-03-27?11:30??KalmanAll\Kalman\testKalman.m
?????文件???????1976??2009-03-25?17:51??KalmanAll\Kalman\tracking_demo.asv
?????文件???????2010??2009-03-30?16:21??KalmanAll\Kalman\tracking_demo.m
?????文件????????267??2005-05-03?13:08??KalmanAll\KPMstats\#histCmpChi2.m#
?????文件???????1955??2005-04-25?19:29??KalmanAll\KPMstats\beta_sample.m
?????文件????????199??2005-04-25?19:29??KalmanAll\KPMstats\chisquared_histo.m
?????文件???????1326??2005-04-25?19:29??KalmanAll\KPMstats\chisquared_prob.m
?????文件???????1389??2005-04-25?19:29??KalmanAll\KPMstats\chisquared_readme.txt
?????文件???????2127??2005-04-25?19:29??KalmanAll\KPMstats\chisquared_table.m
............此處省略577個文件信息
評論
共有 條評論