資源簡介
部分代碼:
%% 應(yīng)用三級三階Runge-Kutta 方法與復(fù)合Gregory求積公式到問題(1.2,1.3,1.4)
%% 通用函數(shù) [t,y]=main(ddefun,kernelfun,initialfun,lag,tspan,dimensional)
%% 其中 ddefun為右端函數(shù),kernelfun為積分核函數(shù),initialfun為初始函數(shù),lag為延遲量,
%% tspan為求解區(qū)間,dimensional為問題維數(shù)
% %%%% 問題1.2
% [t,x]=main(@fun_f1,@fun_g1,@fun_varphi1,0.8,[0,8],1);
%plot(t,x
代碼片段和文件信息
%%?應(yīng)用三級三階Runge-Kutta?方法與復(fù)合Gregory求積公式到問題(1.21.31.4)
%%?通用函數(shù)?[ty]=main(ddefunkernelfuninitialfunlagtspandimensional)
%%?其中?ddefun為右端函數(shù),kernelfun為積分核函數(shù),initialfun為初始函數(shù)lag為延遲量,
%%?tspan為求解區(qū)間,dimensional為問題維數(shù)
%?%%%%?問題1.2
%?[tx]=main(@fun_f1@fun_g1@fun_varphi10.8[08]1);
?%plot(tx)
?%xlabel(‘\it{t}‘);
?%ylabel(‘\it{x(t)}‘);
%%%%?問題1.3
%[tx]=main(@fun_f2@fun_g2@fun_varphi20.8[08]1);
?%plot(tx)
%?xlabel(‘\it{t}‘);
%?ylabel(‘\it{x(t)}‘);
%%%?問題1.4
[tx]=main(@fun_f3@fun_g3@fun_varphi31/6[05]2);
x1=x(:1);
x2=x(:2);
plot(tx1‘-‘tx2‘-.‘)
xlabel(‘\it{t}‘);
ylabel(‘\it{x(t)}‘);
text(t(181)x1(181)‘\fontsize{13}\leftarrow{x1(t)}‘);
text(t(781)x2(781)‘\fontsize{13}\leftarrow{x2(t)}‘);
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件????????179??2009-07-17?10:10??fun_f1.m
?????文件????????148??2009-07-17?10:09??fun_f2.m
?????文件????????222??2009-07-17?14:20??fun_f3.m
?????文件????????117??2009-07-17?10:12??fun_g1.m
?????文件????????128??2009-07-17?10:11??fun_g2.m
?????文件????????112??2009-07-17?14:20??fun_g3.m
?????文件????????126??2009-07-17?10:15??fun_varphi1.m
?????文件????????115??2009-07-17?10:14??fun_varphi2.m
?????文件????????126??2009-07-17?14:20??fun_varphi3.m
?????文件???????1162??2009-07-17?15:03??main.asv
?????文件???????1437??2009-07-17?15:48??main.m
?????文件?????????56??2009-07-17?15:58??readme.txt
?????文件????????814??2010-07-24?23:37??example.asv
?????文件????????812??2010-07-24?23:38??example.m
-----------?---------??----------?-----??----
?????????????????5554????????????????????14
評論
共有 條評論