資源簡介
基于二維直方圖的最大模糊熵閾值圖像分割,相比于一維最大模糊熵,分割效果更好。隸屬度函數(shù)采用S函數(shù)
代碼片段和文件信息
%%----------------S函數(shù)二維最大模糊熵————————
clc;
clear?all;
tic
data=imread(‘rice.bmp‘);???
if?isrgb(data)
????data=rgb2gray(data);
end
figure(1)
imshow(data);
figure(2);
imhist(data);
?
%?data=double(data);%雙精度灰度圖像?
?
%?h=fspecial(‘a(chǎn)verage‘3);?
%?J=round(filter2(hI));?
data=double(data);
a=1/9.*[1?1?1;1?1?1;1?1?1];?
J=round(conv2(dataa‘same‘));?
?
%?J=double(J);
L=256;?
[mn]=size(data);?
N=m*n;?
%?G_min?=min(min(im2uint8(I)));????%?the?min?gray?value?of?the?image?
%?G_max?=max(max(im2uint8(I)));?%?the?max?gray?value?of?the?iamge?
?
I_2Dhist?=zeros(LL);?
%?the?array?to?store?the?2D?hist?of?the?image?
for?j=1:m?
?????for?i=1:n?
?????????g=data(ij)+1;????????????
?????????%?橫軸信息避免0所以加1,象素灰度?
?????????w?=J(ij)+1;?
?????????%?縱軸信息,避免0,所以加1,局部區(qū)域灰度?
?????
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????2662??2012-12-14?17:32??TwoDZuiXiaoFuzzyEntropy.m
-----------?---------??----------?-----??----
?????????????????2662????????????????????1
評論
共有 條評論