資源簡介
將小波濾波方法與VMD算法結合,提取故障信息
代碼片段和文件信息
%---------------?Preparation
clear?all;
close?all;
clc;
%?Time?Domain?0?to?T
L=1024;
fs?=?12000;
t?=?(1:1:L)/fs;
%?center?frequencies?of?components
f_1?=?2;
f_2?=?24;
f_3?=?288;
%?modes
v_1?=?(cos(2*pi*f_1*t))+1;
v_2?=?1/4*(cos(2*pi*f_2*t));
v_3?=?1/16*(cos(2*pi*f_3*t));
%?for?visualization?purposes
wsub{1}?=?2*pi*f_1;
wsub{2}?=?2*pi*f_2;
wsub{3}?=?2*pi*f_3;
%f?=?v_1?+?v_2?+?v_3?+?0.1*randn(size(v_1));
%?composite?signal?including?noise
z=importdata(‘105.mat‘);
f=z.X105_DE_time(1:L);
f=f-mean(f);
%均值
if?mean(f)<0.00001
????DC=0;
else
????DC=mean(f);
end
%
freqs=(0:length(f)-1).*(fs)/length(fft(f));
%?some?sample?parameters?for?VMD
alpha?=?2000;????????%?moderate?bandwidth?constraint
tau?=?0.3;????????????%?noise-tolerance?(no?strict?fidelity?enforc
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????2570??2017-09-18?10:17??Run_VMD.m
?????文件???????4645??2017-08-28?11:33??VMD.m
-----------?---------??----------?-----??----
?????????????????7215????????????????????2
- 上一篇:matlab實現的圖像柵格化
- 下一篇:RVM2 基于稀疏貝葉斯框架的機器學習算法
評論
共有 條評論