資源簡(jiǎn)介
K均值算法:調(diào)用模糊聚類庫(kù)函數(shù)kmeans Pso粒子群聚類程序:沒(méi)有最優(yōu)解,多次迭代 基于模擬退火的k均值聚類:可以有最優(yōu)解 基于pso的k均值算法:有最優(yōu)解,根據(jù)適應(yīng)度判斷,適應(yīng)度越小,分類效果越好
代碼片段和文件信息
%CalCenter(m_center(j)m_patternpatternNum);
%函數(shù)功能是計(jì)算聚類中心的特征值(本類所有樣品的均值)及該類的樣品數(shù)目
%m_center_i聚類中心結(jié)構(gòu),m_pattern樣品集patternNum樣品個(gè)數(shù)
%返回值是聚類中心結(jié)構(gòu)
function?[m_center_i]=CalCenter(m_center_im_patternpatternNum)
??Nwidth=8;
??temp=zeros(1Nwidth);%臨時(shí)存儲(chǔ)中心的特征值
??a=0;%記錄該類中元素個(gè)數(shù)
??for?i=1:patternNum
??????if(m_pattern(i).category==m_center_i.index)%累加中心所有樣品
??????????a=a+1;
??????????temp=temp+m_pattern(i).feature;
??????end
??end
??m_center_i.patternNum=a;
??if(a~=0)
??????m_center_i.feature=temp/a;%取均值
??else
???????m_center_i.feature=temp;
??end
??????
??????????
??
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????文件????????676??2009-12-15?09:38??20091216okPSO\CalCenter.m
?????文件????????792??2009-12-16?16:22??20091216okPSO\FanKmean.m
?????文件???????6046??2009-12-17?11:04??20091216okPSO\FanKmeanba
?????文件???????8089??2009-12-15?11:01??20091216okPSO\FanPSO.m
?????文件???????1816??2009-12-15?10:25??20091216okPSO\GetDistanceerror.m
?????文件???????3793??2009-12-16?22:01??20091216okPSO\KmeanClusterba
?????文件??????24064??2009-12-17?11:13??20091216okPSO\程序說(shuō)明.doc
?????文件???????8558??2009-12-16?11:20??20091216okPSO\???DownloadPSO091216funciton.m
?????目錄??????????0??2009-12-17?11:15??20091216okPSO
-----------?---------??----------?-----??----
????????????????53834????????????????????9
評(píng)論
共有 條評(píng)論