資源簡介
在matlab中,使用此工具進行樣本訓練和預測。 經典版本1.5,本機使用過,強力推薦。速度略好于libsvm。
代碼片段和文件信息
function?[featureseigveceigvals]?=?AFE(Xskernel?kernel_parsXtypenbeigveceigvals)
%?Automatic?Feature?Extraction?by?Nystr鰉?method
%
%
%?>>?features?=?AFE(X?kernel?sig2?Xt)
%
%?Description
%?Using?the?Nystr鰉?approximation?method?the?mapping?of?data?to
%?the?feature?space?can?be?evaluated?explicitly.?This?gives?the
%?features?that?one?can?use?for?a?linear?regression?or
%?classification.?The?decomposition?of?the?mapping?to?the?feature
%?space?relies?on?the?eigenvalue?decomposition?of?the?kernel
%?matrix.?The?Matlab?(‘eigs‘)?or?Nystr鰉‘s?(‘eign‘)?approximation
%?using?the?nb?most?important?eigenvectors/eigenvalues?can?be
%?used.?The?eigenvalue?decomposition?is?not?re-calculated?if?it?is
%?passed?as?an?extra?argument.?This?routine?internally?calls?a?cmex?file.
%
%?Full?syntax
%?
%?>>?[features?U?lam]?=?AFE(X?kernel?sig2?Xt)?
%?>>?[features?U?lam]?=?AFE(X?kernel?sig2?Xt?type)?
%?>>?[features?U?lam]?=?AFE(X?kernel?sig2?Xt?type?nb)?
%?>>?features??????????=?AFE(X?
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????2738??2003-02-21?22:39??LS-SVMlab1.5\AFE.m
?????文件???????5785??2003-02-21?22:39??LS-SVMlab1.5\bay_errorbar.m
?????文件???????2003??2003-02-21?22:39??LS-SVMlab1.5\bay_initlssvm.m
?????文件??????10345??2003-02-21?22:39??LS-SVMlab1.5\bay_lssvm.m
?????文件???????8187??2003-02-21?22:39??LS-SVMlab1.5\bay_lssvmARD.m
?????文件???????9358??2003-02-21?22:39??LS-SVMlab1.5\bay_modoutClass.m
?????文件???????5977??2003-02-21?22:39??LS-SVMlab1.5\bay_optimize.m
?????文件???????4178??2003-02-21?22:39??LS-SVMlab1.5\bay_rr.m
?????文件????????164??2012-06-06?16:11??LS-SVMlab1.5\buffer.mc
?????文件???????5632??2003-02-21?22:39??LS-SVMlab1.5\changelssvm.m
?????文件???????4245??2003-02-21?22:39??LS-SVMlab1.5\code.m
?????文件???????2118??2003-02-21?22:39??LS-SVMlab1.5\codedist_bay.m
?????文件????????756??2003-02-21?22:39??LS-SVMlab1.5\codedist_hamming.m
?????文件???????2018??2003-02-21?22:39??LS-SVMlab1.5\codedist_loss.m
?????文件???????4125??2003-02-21?22:39??LS-SVMlab1.5\codelssvm.m
?????文件???????5197??2003-02-21?22:39??LS-SVMlab1.5\code_ECOC.m
?????文件????????550??2003-02-21?22:39??LS-SVMlab1.5\code_MOC.m
?????文件????????364??2003-02-21?22:39??LS-SVMlab1.5\code_OneVsAll.m
?????文件????????555??2003-02-21?22:39??LS-SVMlab1.5\code_OneVsOne.m
?????文件???????8174??2003-02-21?22:39??LS-SVMlab1.5\crossvalidate.m
?????文件???????1886??2003-02-21?22:39??LS-SVMlab1.5\deltablssvm.m
?????文件???????3369??2003-02-21?22:39??LS-SVMlab1.5\democlass.m
?????文件???????3864??2003-02-21?22:39??LS-SVMlab1.5\demofun.m
?????文件???????4747??2003-02-21?22:39??LS-SVMlab1.5\demomodel.m
?????文件???????2239??2003-02-21?22:39??LS-SVMlab1.5\demo_fixedclass.m
?????文件???????3099??2003-02-21?22:39??LS-SVMlab1.5\demo_fixedsize.m
?????文件???????3337??2003-02-21?22:39??LS-SVMlab1.5\demo_yinyang.m
?????文件???????3507??2003-02-21?22:39??LS-SVMlab1.5\denoise_kpca.m
?????文件???????3414??2003-02-21?22:39??LS-SVMlab1.5\eign.m
?????文件???????6927??2003-02-21?22:39??LS-SVMlab1.5\gridsearch.m
............此處省略65個文件信息
評論
共有 條評論