資源簡介
參數估計 function [mu, sigma] = Bayesian_parameter_est(train_patterns, train_targets, sigma)
代碼片段和文件信息
function?[mu?sigma]?=?Bayesian_parameter_est(train_patterns?train_targets?sigma)
%?Estimate?the?mean?using?the?Bayesian?parameter?estimation?for?Gaussian?mixture?algorithm估計平均值,用貝葉斯參數的估計作為簡縮高斯函數集算法
%?Inputs:
%? patterns -?Train?patterns
% targets -?Train?targets
% sigma -?The?covariance?matrix?for?each?class?每一類矩陣的協方差
%
%?Outputs
% mu -?The?estimated?mean?平均值
% sigma -?The?estimated?covariances?協方差
[NM] =?size(train_patterns);
Uclasses?=?unique(train_targets);
Nuc =?length(Uclasses);
%Find?initial?estimates?for?mu?and?sigma?for?the?classes
mu0 =?zeros(Nuc?N);
sigma0 =?zeros(Nuc?N?N);
for?i?=?1:Nuc
indices =?find(train_targets?==?Uclasses(i));
???mu0(i:)?=?mean(train_patterns(:indices)‘);
???sigma0(i::)?=?sqrtm(cov(train_patterns(:indices)‘1));%方根矩陣???協方差:COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))
- 上一篇:Matlab 多目標優化
- 下一篇:基于matlab編寫的利用蟻群算法的小車路徑優化
評論
共有 條評論