資源簡(jiǎn)介
利用100個(gè)男女訓(xùn)練集樣本,使用貝葉斯分類器判別男女。1.采用最大似然法和貝葉斯估計(jì)的方法獲得密度函數(shù),設(shè)定不同的先驗(yàn)概率,觀察判別結(jié)果正確率。2.分別在男女相關(guān)不相關(guān)的情況下分析結(jié)果正確率。3.設(shè)定不同的風(fēng)險(xiǎn),采用最小風(fēng)險(xiǎn)的Bayes決策重復(fù)上面實(shí)驗(yàn)。

代碼片段和文件信息
%function?bayes_judge_by_height(input?label?num_pic?female_previous_poss?male_previous_poss)
function?bayes_judge_by_height(female_previous_poss)
%這里的μ的先驗(yàn)估計(jì)在函數(shù)get_bayes_miu_pdf()
male_previous_poss?=?1?-?female_previous_poss;
female_miu_pre_mean?=?163;
female_miu_pre_vari?=?2.5;
male_miu_pre_mean?=?174;%假定miu可用一個(gè)已知的正態(tài)分布作為先驗(yàn)密度
male_miu_pre_vari?=?1;
%?female_previous_poss?=?0.5;%兩種類別的先驗(yàn)概率
%?male_previous_poss???=?0.5;
female_HEI_vari?=?44.8;%這個(gè)是總體的方差,可以改動(dòng)這個(gè)值來體驗(yàn)結(jié)果的變化
male_HEI_vari?=?21.2;
female_data?=?load(‘F:\學(xué)習(xí)新知\模式識(shí)別\模式識(shí)別1\data\FEMALE.TXT‘);
female_height?=?female_data(:1);
male_data?=???load(‘F:\學(xué)習(xí)新知\模式識(shí)別\模式識(shí)別1\data\MALE.TXT‘);
male_height?=?male_data(:1);
fileID?=?fopen(‘F:\學(xué)習(xí)新知\模式識(shí)別\模式識(shí)別1\data\test2.txt‘);
data?=?fscanf(?fileID?‘%f?%f?%s‘?[3?inf]?);
fclose(fileID);
input?=?data(1?:);
input?=?input‘;
label?????=?data(3?:);
label?????=?label‘;
female_hei_sum?=?sum(female_height);
male_hei_sum???=?sum(male_height);
%根據(jù)P35公式求出總體的均值
female_HEI_mean?=?(?female_miu_pre_vari?*?female_miu_pre_vari?*?female_hei_sum?+?female_HEI_vari?*?female_HEI_vari?*?female_miu_pre_mean?)?/?(?length(female_height)?*?female_miu_pre_vari?*?female_miu_pre_vari?+?female_HEI_vari?*?female_HEI_vari?);
male_HEI_mean???=?(?male_miu_pre_vari?*?male_miu_pre_vari?*?male_hei_sum???+?male_HEI_vari?*?male_HEI_vari?*?male_miu_pre_mean?????)?/?(?length(male_height)???*?male_miu_pre_vari?*?male_miu_pre_vari?+???male_HEI_vari?*?male_HEI_vari?);
%fprintf(‘mean--------%f?%f\n‘?female_HEI_mean?male_HEI_mean);
%得到兩類的類條件概率密度,得出判決條件
female_HEI_p?=?normpdf(input?female_HEI_mean?sqrt(female_HEI_vari));%設(shè)出總體符合的正態(tài)分布
male_HEI_p?=?normpdf(input?male_HEI_mean?sqrt(male_HEI_vari));
g?=?female_previous_poss?*?female_HEI_p?-?male_previous_poss?*?male_HEI_p;
%在圖上的x軸上標(biāo)志出紅色的female訓(xùn)練點(diǎn)、藍(lán)色的male訓(xùn)練點(diǎn)、黑色的測(cè)試點(diǎn)
figure(1);
%?plot(female_height?0?‘ro‘?male_height?0?‘b*‘?input?0?‘bo‘);
%?hold?on;
str_male_previous_poss??=?num2str(male_previous_poss);
str_female_previous_poss=?num2str(female_previous_poss);
str_title???????????????=?[str_male_previous_poss?‘vs‘?str_female_previous_poss];
title(str_title);
disp(str_title);
hold?on;
%?syms?y?x;
%?y?=?normpdf(x?female_HEI_mean?sqrt(female_HEI_vari))?*?female_previous_poss?+?normpdf(x?male_HEI_mean?sqrt(male_HEI_vari))?*?male_previous_poss?==?0;
%?x?=?solve(y);
%?x?=?round(x);
%?fprintf(‘\n\n%f‘?x);
%?ylim=get(gca‘Ylim‘);
%?plot([xx]?ylim?‘m-‘?‘LineWidth‘2);
%?hold?on;
%畫出兩類的類條件概率函數(shù)圖
x?=?140:0.1:200;
y1?=?normpdf(x?female_HEI_mean?sqrt(female_HEI_vari));
y2?=?normpdf(x?male_HEI_mean?sqrt(male_HEI_vari));
plot(x?y1?‘r-‘?x?y2?‘b-‘);
grid?on;
hold?on;
%判決屬于哪一類并每一種分類的計(jì)算錯(cuò)誤率
cnt_female_correct?=?0;??
cnt_female_total???=?0;
cnt_male_correct???=?0;??
cnt_male_total?????=?0;
for?i=1:length(g)
%????fprintf(?‘%d:%d----%f?%f?‘?i?input(i)?normpdf(input(i)?female_HEI_mean?sqrt(female_HEI_vari))?normpdf(input(i)?male_HEI_mean?sqrt(male
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2018-10-21?16:12??CSDN\
?????文件???????54784??2018-09-25?21:16??CSDN\1_Bayes?分類器實(shí)驗(yàn).doc
?????文件????????5195??2018-10-11?23:06??CSDN\bayes_judge_by_height.m
?????文件????????5299??2018-10-11?23:06??CSDN\bayes_judge_by_weight.m
?????目錄???????????0??2018-10-05?20:01??CSDN\data\
?????文件?????????814??2018-10-03?10:51??CSDN\data\data.TXT
?????文件?????????833??2018-09-23?16:15??CSDN\data\FEMALE.TXT
?????文件?????????424??2004-10-08?09:04??CSDN\data\MALE.TXT
?????文件?????????350??2004-10-08?09:03??CSDN\data\test1.txt
?????文件????????3020??2004-10-08?09:10??CSDN\data\test2.txt
?????文件?????????850??2018-10-03?21:15??CSDN\data\train.txt
?????文件????????3368??2018-10-04?16:30??CSDN\data\train2.txt
?????文件????????5355??2018-10-05?18:56??CSDN\funheight.m
?????文件????????5375??2018-10-05?18:49??CSDN\funweigh.m
?????文件????????6230??2018-10-05?19:29??CSDN\fun_correlated_test1.m
?????文件????????6181??2018-10-05?19:09??CSDN\fun_correlated_test2.m
?????文件????????6222??2018-10-05?19:28??CSDN\fun_uncorrelated_test1.m
?????文件????????6198??2018-10-05?19:17??CSDN\fun_uncorrelated_test2.m
?????文件????????1153??2018-10-11?23:06??CSDN\get_bayes_miu_pdf.m
?????文件????????1435??2018-10-04?16:44??CSDN\tiaoshi.m
?????文件????????2248??2018-10-05?19:35??CSDN\tuxiang.m
?????文件????????1715??2018-10-05?19:52??CSDN\tuxiangfengxian.m
?????文件??????343908??2018-10-21?16:12??CSDN\大作業(yè)新排版2.docx
?????文件?????????256??2018-10-05?20:05??CSDN\說明.txt
?????目錄???????????0??2018-10-05?21:50??CSDN\部分圖像\
?????文件???????47646??2018-09-25?23:56??CSDN\部分圖像\1不相關(guān).PNG
?????文件???????53102??2018-09-25?23:53??CSDN\部分圖像\1相關(guān).PNG
?????文件???????57491??2018-09-25?23:42??CSDN\部分圖像\2不相關(guān).PNG
?????文件???????63662??2018-09-25?23:44??CSDN\部分圖像\2相關(guān).PNG
?????文件???????24165??2018-10-05?21:49??CSDN\部分圖像\correlate.PNG
?????文件???????54834??2018-09-27?07:41??CSDN\部分圖像\high.PNG
............此處省略5個(gè)文件信息
評(píng)論
共有 條評(píng)論