-
大小: 5KB文件類型: .zip金幣: 2下載: 0 次發(fā)布日期: 2023-01-03
- 語言: 其他
- 標(biāo)簽: 機(jī)器學(xué)習(xí)??PCA??數(shù)據(jù)分析??
資源簡介
機(jī)器學(xué)習(xí)(9)-PCA原理與實(shí)現(xiàn):數(shù)據(jù)集與源碼下載
機(jī)器學(xué)習(xí)(9)-PCA原理與實(shí)現(xiàn):數(shù)據(jù)集與源碼下載
機(jī)器學(xué)習(xí)(9)-PCA原理與實(shí)現(xiàn):數(shù)據(jù)集與源碼下載

代碼片段和文件信息
#?PCA
#?Importing?the?libraries
import?numpy?as?np
import?matplotlib.pyplot?as?plt
import?pandas?as?pd
#?Importing?the?dataset
dataset?=?pd.read_csv(‘Wine.csv‘)
X?=?dataset.iloc[:?0:13].values
y?=?dataset.iloc[:?13].values
#?Splitting?the?dataset?into?the?Training?set?and?Test?set
from?sklearn.model_selection?import?train_test_split
X_train?X_test?y_train?y_test?=?train_test_split(X?y?test_size?=?0.2?random_state?=?0)
#?Feature?Scaling
from?sklearn.preprocessing?import?StandardScaler
sc?=?StandardScaler()
X_train?=?sc.fit_transform(X_train)
X_test?=?sc.transform(X_test)
#?Applying?PCA
from?sklearn.decomposition?import?PCA
pca?=?PCA(n_components?=?2)
X_train?=?pca.fit_transform(X_train)
X_test?=?pca.transform(X_test)
explained_variance?=?pca.explained_variance_ratio_
#?Fitting?Logistic?Regression?to?the?Training?set
from?sklearn.linear_model?import?LogisticRegression
classifier?=?LogisticRegression(random_state?=?0)
classifier.fit(X_train?y_train)
#?Predicting?the?Test?set?results
y_pred?=?classifier.predict(X_test)
#?Making?the?Confusion?Matrix
from?sklearn.metrics?import?confusion_matrix
cm?=?confusion_matrix(y_test?y_pred)
#?Visualising?the?Training?set?results
from?matplotlib.colors?import?ListedColormap
X_set?y_set?=?X_train?y_train
X1?X2?=?np.meshgrid(np.arange(start?=?X_set[:?0].min()?-?1?stop?=?X_set[:?0].max()?+?1?step?=?0.01)
?????????????????????np.arange(start?=?X_set[:?1].min()?-?1?stop?=?X_set[:?1].max()?+?1?step?=?0.01))
plt.contourf(X1?X2?classifier.predict(np.array([X1.ravel()?X2.ravel()]).T).reshape(X1.shape)
?????????????alpha?=?0.75?cmap?=?ListedColormap((‘red‘?‘green‘?‘blue‘)))
plt.xlim(X1.min()?X1.max())
plt.ylim(X2.min()?X2.max())
for?i?j?in?enumerate(np.unique(y_set)):
????plt.scatter(X_set[y_set?==?j?0]?X_set[y_set?==?j?1]
????????????????c?=?ListedColormap((‘red‘?‘green‘?‘blue‘))(i)?label?=?j)
plt.title(‘Logistic?Regression?(Training?set)‘)
plt.xlabel(‘PC1‘)
plt.ylabel(‘PC2‘)
plt.legend()
plt.show()
#?Visualising?the?Test?set?results
from?matplotlib.colors?import?ListedColormap
X_set?y_set?=?X_test?y_test
X1?X2?=?np.meshgrid(np.arange(start?=?X_set[:?0].min()?-?1?stop?=?X_set[:?0].max()?+?1?step?=?0.01)
?????????????????????np.arange(start?=?X_set[:?1].min()?-?1?stop?=?X_set[:?1].max()?+?1?step?=?0.01))
plt.contourf(X1?X2?classifier.predict(np.array([X1.ravel()?X2.ravel()]).T).reshape(X1.shape)
?????????????alpha?=?0.75?cmap?=?ListedColormap((‘red‘?‘green‘?‘blue‘)))
plt.xlim(X1.min()?X1.max())
plt.ylim(X2.min()?X2.max())
for?i?j?in?enumerate(np.unique(y_set)):
????plt.scatter(X_set[y_set?==?j?0]?X_set[y_set?==?j?1]
????????????????c?=?ListedColormap((‘red‘?‘green‘?‘blue‘))(i)?label?=?j)
plt.title(‘Logistic?Regression?(Test?set)‘)
plt.xlabel(‘PC1‘)
plt.ylabel(‘PC2‘)
plt.legend()
plt.show()
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????文件????????2840??2016-12-23?05:03??pca.py
?????文件???????11452??2018-10-26?20:35??Wine.csv
評(píng)論
共有 條評(píng)論