91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 40.96MB
    文件類型: .zip
    金幣: 1
    下載: 0 次
    發(fā)布日期: 2023-07-05
  • 語言: 其他
  • 標簽: 深度學習??

資源簡介

卷積神經網絡在圖像識別應用,此壓縮包包括代碼。

資源截圖

代碼片段和文件信息

#?-*-?coding:?utf-8?-*-
“““

@author:?Mingming
“““
import?tensorflow?as?tf?
import?tensorflow.examples.tutorials.mnist.input_data?as?input_data
import?os
import?cv2
import?numpy?as?np
mnist?=?input_data.read_data_sets(“MNIST_data/“?one_hot=True)?????#下載并加載mnist數(shù)據(jù)
x?=?tf.placeholder(tf.float32?[None?784])????????????????????????#輸入的數(shù)據(jù)占位符
y_actual?=?tf.placeholder(tf.float32?shape=[None?10])????????????#輸入的標簽占位符

#定義一個函數(shù),用于初始化所有的權值?W
def?weight_variable(shape):
??initial?=?tf.truncated_normal(shape?stddev=0.01)
??return?tf.Variable(initial)

#定義一個函數(shù),用于初始化所有的偏置項?b
def?bias_variable(shape):
??initial?=?tf.constant(0.1?shape=shape)
??return?tf.Variable(initial)
??
#定義一個函數(shù),用于構建卷積層
def?conv2d(x?W):
??return?tf.nn.conv2d(x?W?strides=[1?1?1?1]?padding=‘SAME‘)

#定義一個函數(shù),用于構建池化層
def?max_pool(x):
??return?tf.nn.max_pool(x?ksize=[1?2?2?1]strides=[1?2?2?1]?padding=‘SAME‘)

def?predict(image):
??if?os.path.exists(“./modelSave/checkpoint“):
????saver.restore(sess“./modelSave/model.ckpt“)
??print(sess.run(tf.argmax(y_predict1)feed_dict={x_image:[image]keep_prob:1}))
??#print(tf.argmax(y_predict1))
??


#構建網絡
x_image?=?tf.reshape(x?[-128281])?????????#轉換輸入數(shù)據(jù)shape以便于用于網絡中
W_conv1?=?weight_variable([5?5?1?32])??????
b_conv1?=?bias_variable([32])???????
h_conv1?=?tf.nn.relu(conv2d(x_image?W_conv1)?+?b_conv1)?????#第一個卷積層
h_pool1?=?max_pool(h_conv1)??????????????????????????????????#第一個池化層

W_conv2?=?weight_variable([5?5?32?64])
b_conv2?=?bias_variable([64])
h_conv2?=?tf.nn.relu(conv2d(h_pool1?W_conv2)?+?b_conv2)??????#第二個卷積層
h_pool2?=?max_pool(h_conv2)???????????????????????????????????#第二個池化層

W_fc1?=?weight_variable([7?*?7?*?64?1024])
b_fc1?=?bias_variable([1024])
h_pool2_flat?=?tf.reshape(h_pool2?[-1?7*7*64])??????????????#reshape成向量
h_fc1?=?tf.nn.relu(tf.matmul(h_pool2_flat?W_fc1)?+?b_fc1)????#第一個全連接層

keep_prob?=?tf.placeholder(“float“)?
h_fc1_drop?=?tf.nn.dropout(h_fc1?keep_prob)??????????????????#dropout層

W_fc2?=?weight_variable([1024?10])
b_fc2?=?bias_variable([10])
y_predict=tf.nn.softmax(tf.matmul(h_fc1_drop?W_fc2)?+?b_fc2)???#softmax層

cross_entropy?=?-tf.reduce_sum(y_actual*tf.log(y_predict))?????#交叉熵
train_step?=?tf.train.RMSPropOptimizer(1e-7).minimize(cross_entropy)????#梯度下降法
correct_prediction?=?tf.equal(tf.argmax(y_predict1)?tf.argmax(y_actual1))????
accuracy?=?tf.reduce_mean(tf.cast(correct_prediction?“float“))?????????????????#精確度計算
sess=tf.InteractiveSession()??????????????????????????
#sess.run(tf.initialize_all_variables())
#sess.run(tf.global_variables_initializer())
saver?=?tf.train.Saver()
if?not?os.path.exists(“modelSave“):
??os.mkdir(“modelSave“)
def?train():
??if?os.path.exists(“./modelSave/model.ckpt.index“):
????saver.restore(sess“./modelSave/model.ckpt“)
??for?i?in?range(20000):
????batch?=?mnist.train.next_batch(100)
????if?i%100?==?0:??????????????????#訓練100次,驗證一次
??????train_acc?=?accuracy.eval(feed_dict={x:batch[0]?y_actual:?batch[1]?keep_prob:?1.0})
??????print(‘step‘i‘trainin

?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2019-03-21?20:01??CNN_Test\
?????目錄???????????0??2019-03-21?09:14??CNN_Test\MNIST_data\
?????文件?????1648877??2018-08-08?21:27??CNN_Test\MNIST_data\t10k-images-idx3-ubyte.gz
?????文件?????9912422??2018-08-08?21:27??CNN_Test\MNIST_data\train-images-idx3-ubyte.gz
?????文件???????28881??2018-08-08?21:27??CNN_Test\MNIST_data\train-labels-idx1-ubyte.gz
?????文件????????4542??2018-08-08?21:27??CNN_Test\MNIST_data\t10k-labels-idx1-ubyte.gz
?????文件????????8196??2019-03-21?20:39??CNN_Test\.DS_Store
?????目錄???????????0??2019-03-21?20:42??__MACOSX\
?????目錄???????????0??2019-03-21?20:42??__MACOSX\CNN_Test\
?????文件?????????120??2019-03-21?20:39??__MACOSX\CNN_Test\._.DS_Store
?????文件????????3847??2019-03-21?20:02??CNN_Test\CNN.py
?????文件?????????493??2019-03-21?19:16??CNN_Test\Convolution_without_pool.py
?????文件?????????210??2019-03-21?19:16??__MACOSX\CNN_Test\._Convolution_without_pool.py
?????文件????????1417??2019-03-21?18:53??CNN_Test\ConvolutionTest.py
?????文件?????????176??2019-03-21?18:53??__MACOSX\CNN_Test\._ConvolutionTest.py
?????目錄???????????0??2019-03-21?10:52??CNN_Test\testEvalPics\
?????文件????????6148??2019-03-21?18:19??CNN_Test\testEvalPics\.DS_Store
?????目錄???????????0??2019-03-21?20:42??__MACOSX\CNN_Test\testEvalPics\
?????文件?????????120??2019-03-21?18:19??__MACOSX\CNN_Test\testEvalPics\._.DS_Store
?????文件???????33447??2019-03-21?10:46??CNN_Test\testEvalPics\test7.jpg
?????文件?????????210??2019-03-21?10:46??__MACOSX\CNN_Test\testEvalPics\._test7.jpg
?????文件???????11446??2019-03-21?10:49??CNN_Test\testEvalPics\test5.png
?????文件?????????588??2019-03-21?10:49??__MACOSX\CNN_Test\testEvalPics\._test5.png
?????文件???????16475??2019-03-21?10:50??CNN_Test\testEvalPics\test5.jpg
?????文件?????????210??2019-03-21?10:50??__MACOSX\CNN_Test\testEvalPics\._test5.jpg
?????文件???????15982??2019-03-21?10:52??CNN_Test\testEvalPics\test2.jpg
?????文件?????????210??2019-03-21?10:52??__MACOSX\CNN_Test\testEvalPics\._test2.jpg
?????文件???????15982??2019-03-21?10:51??CNN_Test\testEvalPics\test2
?????文件?????????323??2019-03-21?10:51??__MACOSX\CNN_Test\testEvalPics\._test2
?????目錄???????????0??2019-03-21?19:59??CNN_Test\modelSave\
?????文件???????64472??2019-03-21?19:58??CNN_Test\modelSave\model.ckpt.meta
............此處省略3個文件信息

評論

共有 條評論