資源簡介
使用python自己實現神經網絡操縱小車,使用TensorFlow框架實現神經網絡操縱小車,神經網絡入門.

代碼片段和文件信息
#?定義網絡結構向外提供接口
import?tensorflow?as?tf
def?add_layer(inputs?in_size?out_size?activation_function=None):
????“““
????:param?input:?數據輸入
????:param?in_size:?輸入大小
????:param?out_size:?輸出大小
????:param?activation_function:?激活函數(默認沒有)
????:return:output:數據輸出
????“““
????Weights?=?tf.Variable(tf.random_normal([in_size?out_size]))
????biases?=?tf.Variable(tf.zeros([1?out_size])?+?0.1)
????Wx_plus_b?=?tf.matmul(inputs?Weights)?+?biases
????if?activation_function?is?None:
????????outputs?=?Wx_plus_b
????else:
????????outputs?=?activation_function(Wx_plus_b)
????return?outputs
xs?=?tf.placeholder(tf.float32?[None?7])
ys?=?tf.placeholder(tf.float32?[None?2])
#?定義神經網絡結構
hidden_layer1?=?add_layer(xs?7?30?activation_function=tf.nn.sigmoid)
prediction?=?add_layer(hidden_layer1?30?2?activation_function=tf.nn.sigmoid)
loss?=?tf.reduce_mean(tf.reduce_sum(tf.square(ys?-?prediction)?reduction_indices=[1]))
train_step?=?tf.train.GradientDescentOptimizer(0.1).minimize(loss)
saver?=?tf.train.Saver()
sess?=?tf.Session()
saver.restore(sess?“model/nn_car“)
def?get_res_by_tf(data):
????return?sess.run(prediction?feed_dict={xs:?[data]})
#?print(sess.run(prediction
#????????????????feed_dict={xs:?[[94.26076?63.94289?65.73067?198.38091?118.97282?180.00000?5.16617]]}))
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2020-01-29?12:01??RacingGame\
?????目錄???????????0??2020-01-29?12:01??RacingGame\.idea\
?????文件?????????520??2019-12-11?10:38??RacingGame\.idea\RacingGame.iml
?????目錄???????????0??2019-12-10?09:55??RacingGame\.idea\inspectionProfiles\
?????文件?????????174??2019-10-19?10:39??RacingGame\.idea\inspectionProfiles\profiles_settings.xm
?????文件????????2358??2020-01-08?09:56??RacingGame\.idea\markdown-navigator-enh.xm
?????文件????????5426??2020-01-08?09:56??RacingGame\.idea\markdown-navigator.xm
?????文件?????????197??2019-12-11?10:38??RacingGame\.idea\misc.xm
?????文件?????????279??2019-10-19?10:39??RacingGame\.idea\modules.xm
?????文件?????????185??2019-10-30?18:18??RacingGame\.idea\vcs.xm
?????文件???????23069??2020-01-29?12:01??RacingGame\.idea\workspace.xm
?????目錄???????????0??2020-01-11?23:25??RacingGame\ai_logic_使用tensorflow框架\
?????文件????????8201??2020-01-11?23:25??RacingGame\ai_logic_使用tensorflow框架\MotorRacing.py
?????文件???????????0??2019-10-19?10:47??RacingGame\ai_logic_使用tensorflow框架\__init__.py
?????目錄???????????0??2020-01-09?14:17??RacingGame\ai_logic_使用tensorflow框架\__pycache__\
?????文件?????????145??2020-01-08?10:09??RacingGame\ai_logic_使用tensorflow框架\__pycache__\__init__.cpython-37.pyc
?????文件????????1333??2020-01-09?14:17??RacingGame\ai_logic_使用tensorflow框架\__pycache__\ai.cpython-37.pyc
?????文件????????1437??2020-01-09?14:17??RacingGame\ai_logic_使用tensorflow框架\ai.py
?????目錄???????????0??2020-01-09?10:23??RacingGame\ai_logic_使用tensorflow框架\data\
?????文件???????34068??2019-10-19?18:44??RacingGame\ai_logic_使用tensorflow框架\data\data.txt
?????文件????????8972??2019-10-19?18:44??RacingGame\ai_logic_使用tensorflow框架\data\res.txt
?????文件????????5304??2020-01-09?11:01??RacingGame\ai_logic_使用tensorflow框架\game_ai_test.py
?????文件????????5052??2020-01-09?11:04??RacingGame\ai_logic_使用tensorflow框架\game_generate_data.py
?????目錄???????????0??2020-01-09?11:02??RacingGame\ai_logic_使用tensorflow框架\model\
?????文件??????????69??2020-01-09?11:02??RacingGame\ai_logic_使用tensorflow框架\model\checkpoint
?????文件????????1208??2020-01-09?11:02??RacingGame\ai_logic_使用tensorflow框架\model\nn_car.data-00000-of-00001
?????文件?????????214??2020-01-09?11:02??RacingGame\ai_logic_使用tensorflow框架\model\nn_car.index
?????文件???????24461??2020-01-09?11:02??RacingGame\ai_logic_使用tensorflow框架\model\nn_car.me
?????文件????????1690??2020-01-08?11:34??RacingGame\ai_logic_使用tensorflow框架\training_model.py
?????目錄???????????0??2020-01-09?11:04??RacingGame\ai_logic_自己實現神經網絡\
?????文件????????1918??2020-01-08?13:30??RacingGame\ai_logic_自己實現神經網絡\Activators.py
............此處省略38個文件信息
評論
共有 條評論