91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 2.84MB
    文件類型: .zip
    金幣: 2
    下載: 0 次
    發布日期: 2023-11-18
  • 語言: Python
  • 標簽:

資源簡介

This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned)

資源截圖

代碼片段和文件信息

“““
The?MIT?License?(MIT)

Copyright?(c)?2017?Marvin?Teichmann
“““

from?__future__?import?absolute_import
from?__future__?import?division
from?__future__?import?print_function

import?os
import?sys

import?numpy?as?np
import?imageio
#?import?scipy?as?scp
#?import?scipy.misc

import?argparse

import?logging

from?convcrf?import?convcrf
from?fullcrf?import?fullcrf

import?torch
from?torch.autograd?import?Variable

from?utils?import?pascal_visualizer?as?vis
from?utils?import?synthetic

import?time

try:
????import?matplotlib.pyplot?as?plt
????matplotlib?=?True
????figure?=?plt.figure()
????plt.close(figure)
except:
????matplotlib?=?False
????pass

logging.basicConfig(format=‘%(asctime)s?%(levelname)s?%(message)s‘
????????????????????level=logging.INFO
????????????????????stream=sys.stdout)


def?do_crf_inference(image?unary?args):

????if?args.pyinn?or?not?hasattr(torch.nn.functional?‘unfold‘):
????????#?pytorch?0.3?or?older?requires?pyinn.
????????args.pyinn?=?True
????????#?Cheap?and?easy?trick?to?make?sure?that?pyinn?is?loadable.
????????import?pyinn

????#?get?basic?hyperparameters
????num_classes?=?unary.shape[2]
????shape?=?image.shape[0:2]
????config?=?convcrf.default_conf
????config[‘filter_size‘]?=?7
????config[‘pyinn‘]?=?args.pyinn

????if?args.normalize:
????????#?Warning?applying?image?normalization?affects?CRF?computation.
????????#?The?parameter?‘col_feats::schan‘?needs?to?be?adapted.

????????#?Normalize?image?range
????????#?????This?changes?the?image?features?and?influences?CRF?output
????????image?=?image?/?255
????????#?mean?substraction
????????#????CRF?is?invariant?to?mean?subtraction?output?is?NOT?affected
????????image?=?image?-?0.5
????????#?std?normalization
????????#???????Affect?CRF?computation
????????image?=?image?/?0.3

????????#?schan?=?0.1?is?a?good?starting?value?for?normalized?images.
????????#?The?relation?is?f_i?=?image?/?schan
????????config[‘col_feats‘][‘schan‘]?=?0.1

????#?make?input?pytorch?compatible
????img?=?image.transpose(2?0?1)??#?shape:?[3?hight?width]
????#?Add?batch?dimension?to?image:?[1?3?height?width]
????img?=?img.reshape([1?3?shape[0]?shape[1]])
????img_var?=?Variable(torch.Tensor(img)).cuda()

????un?=?unary.transpose(2?0?1)??#?shape:?[3?hight?width]
????#?Add?batch?dimension?to?unary:?[1?21?height?width]
????un?=?un.reshape([1?num_classes?shape[0]?shape[1]])
????unary_var?=?Variable(torch.Tensor(un)).cuda()

????logging.debug(“Build?ConvCRF.“)
????##
????#?Create?CRF?module
????gausscrf?=?convcrf.GaussCRF(conf=config?shape=shape?nclasses=num_classes)
????#?Cuda?computation?is?required.
????#?A?CPU?implementation?of?our?message?passing?is?not?provided.
????gausscrf.cuda()

????#?Perform?ConvCRF?inference
????“““
????‘Warm?up‘:?Our?implementation?compiles?cuda?kernels?during?runtime.
????The?first?inference?call?thus?comes?with?some?overhead.
????“““
????logging.info(“Start?Computation.“)
????prediction?=?gausscrf.forward(unary=unary_var?img=img_var)

????if?args.n

?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2018-05-15?16:56??ConvCRF-master\
?????文件????????1166??2018-05-15?16:56??ConvCRF-master\.gitignore
?????文件????????1073??2018-05-15?16:56??ConvCRF-master\LICENSE
?????文件????????2551??2018-05-15?16:56??ConvCRF-master\README.md
?????文件????????8780??2018-05-15?16:56??ConvCRF-master\benchmark.py
?????目錄???????????0??2018-05-15?16:56??ConvCRF-master\convcrf\
?????文件???????????0??2018-05-15?16:56??ConvCRF-master\convcrf\__init__.py
?????文件???????19822??2018-05-15?16:56??ConvCRF-master\convcrf\convcrf.py
?????目錄???????????0??2018-05-15?16:56??ConvCRF-master\data\
?????文件??????????68??2018-05-15?16:56??ConvCRF-master\data\.directory
?????文件??????236150??2018-05-15?16:56??ConvCRF-master\data\2007_000033_0img.png
?????文件????????1710??2018-05-15?16:56??ConvCRF-master\data\2007_000033_5labels.png
?????文件??????343420??2018-05-15?16:56??ConvCRF-master\data\2007_000129_0img.png
?????文件????????4835??2018-05-15?16:56??ConvCRF-master\data\2007_000129_5labels.png
?????文件??????420470??2018-05-15?16:56??ConvCRF-master\data\2007_000332_0img.png
?????文件????????2174??2018-05-15?16:56??ConvCRF-master\data\2007_000332_5labels.png
?????文件??????326961??2018-05-15?16:56??ConvCRF-master\data\2007_000346_0img.png
?????文件????????2433??2018-05-15?16:56??ConvCRF-master\data\2007_000346_5labels.png
?????文件??????370339??2018-05-15?16:56??ConvCRF-master\data\2007_000847_0img.png
?????文件????????2530??2018-05-15?16:56??ConvCRF-master\data\2007_000847_5labels.png
?????文件??????411275??2018-05-15?16:56??ConvCRF-master\data\2007_001284_0img.png
?????文件????????3839??2018-05-15?16:56??ConvCRF-master\data\2007_001284_5labels.png
?????文件??????228540??2018-05-15?16:56??ConvCRF-master\data\2007_001288_0img.png
?????文件????????1801??2018-05-15?16:56??ConvCRF-master\data\2007_001288_5labels.png
?????目錄???????????0??2018-05-15?16:56??ConvCRF-master\data\output\
?????文件??????163137??2018-05-15?16:56??ConvCRF-master\data\output\Res1.png
?????文件??????131469??2018-05-15?16:56??ConvCRF-master\data\output\Res2.pdf
?????文件??????161758??2018-05-15?16:56??ConvCRF-master\data\output\Res2.png
?????文件??????163137??2018-05-15?16:56??ConvCRF-master\data\output\Res_1.png
?????文件????????7037??2018-05-15?16:56??ConvCRF-master\demo.py
?????目錄???????????0??2018-05-15?16:56??ConvCRF-master\fullcrf\
............此處省略9個文件信息

評論

共有 條評論