91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

資源簡介

經典機器學習算法的Python源碼,包括DecisionTree、DeepLearning、KMeans、kNN、logistic regression、ManifoldLearning、NaiveBayes、PCA、Ridge、SVM等

資源截圖

代碼片段和文件信息

#?-*-?coding:?utf-8?-*-
“““
Created?on?Fri?Jul?10?22:04:33?2015

@author:?wepon
“““

import?numpy?as?np

class?DecisionTree:
????“““決策樹使用方法:
????
????????-?生成實例:?clf?=?DecisionTrees().?參數mode可選,ID3或C4.5,默認C4.5
????????
????????-?訓練,調用fit方法:?clf.fit(Xy).??Xy均為np.ndarray類型
????????????????????????????
????????-?預測,調用predict方法:?clf.predict(X).?X為np.ndarray類型
?????????????????????????????????
????????-?可視化決策樹,調用showTree方法?
????
????“““
????def?__init__(selfmode=‘C4.5‘):
????????self._tree?=?None
????????
????????if?mode?==?‘C4.5‘?or?mode?==?‘ID3‘:
????????????self._mode?=?mode
????????else:
????????????raise?Exception(‘mode?should?be?C4.5?or?ID3‘)
????????
????????????
????
????def?_calcEntropy(selfy):
????????“““
????????函數功能:計算熵
????????參數y:數據集的標簽
????????“““
????????num?=?y.shape[0]
???

?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----

????.......???????180??2017-07-28?02:44??MachineLearning\.gitignore

????.......??????9244??2017-07-28?02:44??MachineLearning\DecisionTree\id3_c45.py

????.......??????1304??2017-07-28?02:44??MachineLearning\DecisionTree\readme.md

????.......??????3283??2017-07-28?02:44??MachineLearning\DecisionTree\treePlotter.py

????.......?????12645??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\cnn_LeNet\convolutional_mlp.py

????.......?????20706??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\cnn_LeNet\convolutional_mlp_commentate.py

????.......??????2197??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\dive_into_keras\cnn-svm.py

????.......??????2550??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\dive_into_keras\cnn.py

????.......???????756??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\dive_into_keras\data.py

????.......??????1432??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\dive_into_keras\get_feature_map.py

????.......??????3300??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\dive_into_keras\README.md

????.......???1182905??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\FaceRecognition_CNN(olivettifaces)\olivettifaces.gif

????.......?????15554??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\FaceRecognition_CNN(olivettifaces)\train_CNN_olivettifaces.py

????.......??????7042??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\FaceRecognition_CNN(olivettifaces)\use_CNN_olivettifaces.py

????.......??????5233??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\keras_usage\cnn.py

????.......???????764??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\keras_usage\data.py

????.......??????9005??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\keras_usage\README.md

????.......?????14181??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\mlp\mlp.py

????.......?????17794??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\mlp\mlp_with_commentate.py

????.......???????527??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\readme.md

????.......??????9456??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\Softmax_sgd(or?logistic_sgd)\logistic_sgd.py

????.......?????19117??2017-07-28?02:44??MachineLearning\DeepLearning?Tutorials\Softmax_sgd(or?logistic_sgd)\logistic_sgd_commentate.py

????.......?????60158??2017-07-28?02:44??MachineLearning\KMeans\data.pkl

????.......??????7147??2017-07-28?02:44??MachineLearning\KMeans\kmeans.py

?????文件???????6072??2018-09-06?19:24??MachineLearning\KMeans\kmeans.pyc

????.......??????1237??2017-07-28?02:44??MachineLearning\KMeans\Readme.md

?????文件???????1299??2018-09-07?00:38??MachineLearning\KMeans\test.py

????.......??????2289??2017-07-28?02:44??MachineLearning\kNN\use?Python?and?NumPy\kNN.py

????.......???????159??2017-07-28?02:44??MachineLearning\kNN\use?Python?and?NumPy\readme.txt

????.......??????1056??2017-07-28?02:44??MachineLearning\kNN\use?Python?and?NumPy\testDigits\0_1.txt

............此處省略618個文件信息

評論

共有 條評論