資源簡介
小波軟閾值的去噪的

代碼片段和文件信息
%?Set?sampling?period?and?wavelet?name.
delta?=?0.1;?wname?=?‘coif3‘;
%?Set?scales.?
amax?=?7;
a?=?2.^[1:amax];
%?Compute?associated?pseudo-frequencies.
f?=?scal2frq(awnamedelta);?
%?Compute?associated?pseudo-periods.
per?=?1./f;?
%?Plot?pseudo-periods?versus?scales.
subplot(211)?plot(aper)
title([‘Wavelet:?‘wname?‘?Sampling?period:?‘num2str(delta)])
xlabel(‘Scale‘)
ylabel(‘Computed?pseudo-period‘)
%?For?each?scale?2^i:
%?-?generate?a?sine?function?of?period?per(i);
%?-?perform?a?wavelet?decomposition;
%?-?identify?the?highest?energy?level;
%?-?compute?the?detected?pseudo-period.
for?i?=?1:amax
????%?Generate?sine?function?of?period
????%?per(i)?at?sampling?period?delta.
????t?=?0:delta:100;
????x?=?sin((t.*2*pi)/per(i));
????%?Decompose?x?at?level?9.
????[cl]?=?wavedec(x9wname);
????%?Estimate?standard?deviation?of?detail?coefficients.
????stdc?=?wnoisest(cl[1:amax]);
????%?Compute?identified?period.
????[yjmax]?=?max(stdc);
????idper(i)?=?per(jmax);
end
%?Compare?the?detected?and?computed?pseudo-periods.
subplot(212)?plot(peridper‘o‘perper)
title(‘Detected?vs?computed?pseudo-period‘)
xlabel(‘Computed?pseudo-period‘)
ylabel(‘Detected?pseudo-period‘)?
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件?????229410??2008-12-11?21:13??小波軟閾值的去噪處理代碼\lena.bmp
?????文件????????261??2015-12-15?23:43??小波軟閾值的去噪處理代碼\psnr.mat
?????文件????????195??2015-12-15?23:43??小波軟閾值的去噪處理代碼\psnr_noise_remove.mat
?????文件????????359??2006-04-07?17:57??小波軟閾值的去噪處理代碼\README.txt
?????文件???????1240??2010-05-18?21:24??小波軟閾值的去噪處理代碼\Unti
?????文件????????219??2010-05-18?21:27??小波軟閾值的去噪處理代碼\Unti
?????文件??????11192??2005-08-25?16:47??小波軟閾值的去噪處理代碼\wavlet.fig
?????文件???????6724??2005-08-25?16:47??小波軟閾值的去噪處理代碼\wavlet.m
?????文件???????6783??2010-05-19?11:46??小波軟閾值的去噪處理代碼\wavlet1.m
?????文件???????6790??2010-05-19?11:36??小波軟閾值的去噪處理代碼\wavletbuild.m
?????文件??????38517??2006-04-07?17:58??小波軟閾值的去噪處理代碼\運行抓圖.jpg
?????目錄??????????0??2010-05-19?11:46??小波軟閾值的去噪處理代碼
-----------?---------??----------?-----??----
???????????????301690????????????????????12
評論
共有 條評論