資源簡(jiǎn)介
MATLAB從零到進(jìn)階,其中包含了MATLAB的各個(gè)學(xué)習(xí)模塊以及案例分析。供各位下載學(xué)習(xí)。
代碼片段和文件信息
%--------------------------------------------------------------------------
%??第10章??數(shù)值積分計(jì)算
%--------------------------------------------------------------------------
%%?examp10.1-2
format?long
f?=?@(xy)?x.^2+y.^2;
a1?=?dblquad(f0101)
a2?=?quad2d(f0101)
%%?examp10.1-3
f?=?@(xyz)?x.^2+y.^2+z.^2;
a?=?triplequad(f010101)
%%?examp10.1-4
format?long
f?=?@(xn)?besselk(0(1:n).^2*x.^0.5+1);%構(gòu)造被積函數(shù)匿名函數(shù)句柄
sf?=?quadv(@(x)f(x10)01)%quadv的調(diào)用示例
%%?examp10.1-5
x?=?0:pi/100:pi/2;
y?=?sin(x);
Intyx?=?trapz(xy)%利用離散數(shù)據(jù)積分
Intyx2?=?quadl(@sin0pi/2)%對(duì)sin(x)進(jìn)行0到pi/2的積分
TrueValue?=?int(sym(‘sin(x)‘)0pi/2)%利用符號(hào)計(jì)算求真值
%%?examp10.1-6
x?=?linspace(0pi/2);
y?=?linspace(02*pi);
[X?Y]?=?meshgrid(xy);
f?=?cos(X).*sin(Y);
p?=?cos(x);
q?=?sin(y);
Fx?=?zeros(size(x));
for?k?=?1:length(x)
????Fx(k)?=?trapz(yf(:k)‘.*p(k).*q);
end
format?long
trapz(xFx)
dblquad(@(xy)?cos(x).*sin(y).*cos(x).*sin(y)0pi/202*pi)
%%?examp10.3-1
ticy1?=?dblquad(@(xy)?sqrt(10^4-x.^2).*(x.^2+y.^2<=10^4)...
-100100-100100?)toc
ticy2?=?quad2d(@(xy)?sqrt(10^4-x.^2)-100100...
@(x)-sqrt(10^4-x.^2)@(x)sqrt(10^4-x.^2))toc
%%?examp10.3-2
syms?x?y
int(int(x*yysin(x)cos(x))12)
vpa(ans20)
quad2d(@(xy)?x.*y12@(x)sin(x)@(x)cos(x)‘AbsTol‘1e-12)
quadl(@(x)?arrayfun(@(xx)?quadl(@(y)?xx*ysin(xx)cos(xx))x)12)
%%?examp10.3-3
ticy1?=?quad2d(@(xy)?exp(sin(x)).*log(y)1020@(x)5*x@(x)x.^2)toc
ticy2?=?quadl(@(x)?arrayfun(@(x)?quadl(@(y)?exp(sin(x)).*log(y)...
5*xx.^2)x)1020)toc
ticy3?=?dblquad(@(xy)?exp(sin(x)).*log(y).*(y>=5*x?&?y<=x.^2)102050400)toc
%%?examp10.3-4
f1?=?quadl(@(y)?2*y.*exp(-y.^2).*arrayfun(@(y)quadl(@(x)?exp(-x.^2)./...
?(y.^2+x.^2)-11)y).^20.21)
%%?examp10.4-1
fun?=?‘exp(x1*x2*x3*x4)‘;
%由于各層積分上下限都是常數(shù),為了和程序中要求的保持一致,積分上下限函數(shù)可以寫成如下形式,當(dāng)然還可
%以寫成任意滿足程序要求的形式,譬如up?=?{‘1‘‘0*x1+1‘‘0*(x1+x2)+1‘‘0*(x1*x2-x3)+1‘};
%等等
up?=?{‘1‘‘0*x1+1‘‘0*x2+1‘‘0*x3+1‘};
low?=?{‘0‘‘0*x1‘‘0*x2‘?‘0*x3‘};
format?long
f?=?nIntegrate(funlowup)
%和真實(shí)值比較
syms?x1?x2?x3?x4
double(int(int(int(int(exp(x1*x2*x3*x4)x401)x301)x201)x101))
%%?examp10.4-2
fun?=?‘x1*x2*x3‘;
up?=?{‘2‘‘2*x1‘‘2*x1*x2‘};
low?=?{‘1‘‘x1‘‘x1*x2‘};
f?=?nIntegrate(funlowup)
%%?examp10.4-3
fun4?=?‘sqrt(x1*x2)*log(x3)+sin(x4/x2)‘%構(gòu)造被積函數(shù)字符表達(dá)式
up4?=?{‘2‘‘3*x1‘‘2*x1*x2‘‘x1+2*x1*x3+0*x2‘}%積分上限函數(shù)字符表達(dá)式
low4?=?{‘1‘‘x1‘‘x1*x2‘‘x1+x1*x3+0*x2‘}%積分下限函數(shù)字符表達(dá)式
f?=?nIntegrate(fun4low4up4)
%%?examp10.4-4
fun5?=?‘sin(x1*exp(x2*sqrt(x3)))+x4^x5‘
up5?=?{‘1‘‘exp(x1)‘‘x1+sin(x2)‘‘x1+x3‘‘2*x4‘}
low5?=?{‘0‘‘exp(x1)/2‘‘x1/2+sin(x2)/2‘‘x1/2+x3/2‘‘x4‘}
f?=?nIntegrate(fun5low5up5)
%%?examp10.5-1
%構(gòu)造被積函數(shù),x為長(zhǎng)為4的行向量或者矩陣(列數(shù)為4)。x的每一行表示4維空間中的一個(gè)點(diǎn)
f?=?@(x)?exp(prod(x2));
n?=?10000;
X?=?rand(n4);%隨機(jī)生成n個(gè)4維單位超立方體內(nèi)的點(diǎn)
format?long
I?=?sum(f(X))/n?%用基本的蒙特卡洛法估計(jì)積分值
%%?examp10.5-2
%構(gòu)造被積函數(shù),x為長(zhǎng)為3的列向量或者矩陣(行數(shù)為3)。x的每一列表示s維空間中的一個(gè)點(diǎn)
f?=?@(x)?prod(x);
n?=?100000;
%隨機(jī)均勻生成空間
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????文件???????5671??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第10章?數(shù)值積分計(jì)算\Chapter10.m
?????文件????????218??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第10章?數(shù)值積分計(jì)算\IntDemo.m
?????文件???????2634??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第10章?數(shù)值積分計(jì)算\nIntegrate.m
?????文件???????1076??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第10章?數(shù)值積分計(jì)算\ParaInteDemo.m
?????文件????????418??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第10章?數(shù)值積分計(jì)算\QuadDemo.m
?????文件????????273??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第11章?方程與方程組的數(shù)值解\AJfixPayment.m
?????文件????????141??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第11章?方程與方程組的數(shù)值解\CEqfun.m
?????文件???????1073??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第11章?方程與方程組的數(shù)值解\Chapter11.m
?????文件?????????83??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第11章?方程與方程組的數(shù)值解\Eqfunobj1.m
?????文件?????????90??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第11章?方程與方程組的數(shù)值解\Eqfunobj2.m
?????文件????????137??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第11章?方程與方程組的數(shù)值解\Eqfunobj3.m
?????文件????????137??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第11章?方程與方程組的數(shù)值解\SolveAJfixPayment.m
?????文件????????175??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第11章?方程與方程組的數(shù)值解\solveCEqfun.m
?????文件?????????93??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第11章?方程與方程組的數(shù)值解\SolveEqfun1.m
?????文件?????????98??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第11章?方程與方程組的數(shù)值解\SolveEqfun2.m
?????文件????????291??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第11章?方程與方程組的數(shù)值解\SolveEqfun3.m
?????文件????????314??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第11章?方程與方程組的數(shù)值解\SolveParaEqfun.m
?????文件????????116??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第11章?方程與方程組的數(shù)值解\testAJfixPayment.m
?????文件??????75776??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第11章?方程與方程組的數(shù)值解\貸款數(shù)據(jù).xls
?????文件???????1614??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第12章?常微分方程(組)數(shù)值求解\examp12_2_1.m
?????文件???????1564??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第12章?常微分方程(組)數(shù)值求解\examp12_2_2.m
?????文件???????1180??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第12章?常微分方程(組)數(shù)值求解\examp12_2_3.m
?????文件????????602??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第12章?常微分方程(組)數(shù)值求解\examp12_3_1.m
?????文件????????388??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第12章?常微分方程(組)數(shù)值求解\examp12_3_2.m
?????文件????????964??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第12章?常微分方程(組)數(shù)值求解\examp12_3_3.m
?????文件???????1200??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第12章?常微分方程(組)數(shù)值求解\examp12_3_4.m
?????文件???????2784??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第12章?常微分方程(組)數(shù)值求解\examp12_4_1.m
?????文件???????2585??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第12章?常微分方程(組)數(shù)值求解\examp12_4_2.m
?????文件???????1018??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第12章?常微分方程(組)數(shù)值求解\examp12_4_3.m
?????文件???????1188??2012-11-26?10:51??《MATLAB從零到進(jìn)階》程序與數(shù)據(jù)\第12章?常微分方程(組)數(shù)值求解\examp12_4_4.m
............此處省略553個(gè)文件信息
評(píng)論
共有 條評(píng)論