資源簡介
該工具箱主要用于商業用Matlab軟件包使用。Matlab的工具箱已經在不同的計算機體系結構編譯和測試,包括Linux和Windows。大部分函數可以處理的數據集可高達20,000或更多點的數據。LS- SVMlab對Matlab接口包括一個適合初學者的基本版本,以及一個多類編碼技術和貝葉斯框架的更先進的版本。

代碼片段和文件信息
function?[featureseigveceigvals]?=?AFE(Xskernel?kernel_parsXtypenbeigveceigvals)
%?Automatic?Feature?Extraction?by?Nystr鰉?method
%
%
%?>>?features?=?AFE(X?kernel?sig2?Xt)
%
%?Description
%?Using?the?Nystr鰉?approximation?method?the?mapping?of?data?to
%?the?feature?space?can?be?evaluated?explicitly.?This?gives?the
%?features?that?one?can?use?for?a?linear?regression?or
%?classification.?The?decomposition?of?the?mapping?to?the?feature
%?space?relies?on?the?eigenvalue?decomposition?of?the?kernel
%?matrix.?The?Matlab?(‘eigs‘)?or?Nystr鰉‘s?(‘eign‘)?approximation
%?using?the?nb?most?important?eigenvectors/eigenvalues?can?be
%?used.?The?eigenvalue?decomposition?is?not?re-calculated?if?it?is
%?passed?as?an?extra?argument.?This?routine?internally?calls?a?cmex?file.
%
%?Full?syntax
%?
%?>>?[features?U?lam]?=?AFE(X?kernel?sig2?Xt)?
%?>>?[features?U?lam]?=?AFE(X?kernel?sig2?Xt?type)?
%?>>?[features?U?lam]?=?AFE(X?kernel?sig2?Xt?type?nb)?
%?>>?features??????????=?AFE(X?kernel?sig2?Xt?[][]?U?lam)
%?
%?Outputs????
%???features?:?Nt?x?nb?matrix?with?extracted?features
%???U(*)?????:?N?x?nb?matrix?with?eigenvectors
%???lam(*)???:?nb?x?1?vector?with?eigenvalues
%?Inputs????
%???X??????:?N?x?d?matrix?with?input?data
%???kernel?:?Name?of?the?used?kernel?(e.g.?‘RBF_kernel‘)
%???sig2???:?parameter?of?the?used?kernel
%???Xt?????:?Data?from?which?the?features?are?extracted
%???type(*):?‘eig‘(*)?‘eigs‘?or?‘eign‘
%???nb(*)??:?Number?of?eigenvalues/eigenvectors?used?in?the?eigenvalue?decomposition?approximation
%???U(*)???:?N?x?nb?matrix?with?eigenvectors
%???lam(*)?:?nb?x?1?vector?with?eigenvalues
%?
%?See?also:
%???kernel_matrix?RBF_kernel?demo_fixedsize
%?Copyright?(c)?2002??KULeuven-ESAT-SCD?License?&?help?@?http://www.esat.kuleuven.ac.be/sista/lssvmlab
[Ndim]?=?size(X);
[Ncdim]?=?size(Xs);
eval(‘type;‘‘type=‘‘eig‘‘;‘);
if?~(strcmp(type‘eig‘)?|?strcmp(type‘eigs‘)?|?strcmp(type‘eign‘))
??error(‘Type?needs?to?be?‘‘eig‘‘?‘‘eigs‘‘?or?‘‘eign‘‘...‘);
end
??
%?eigenvalue?decomposition?to?do..
if?nargin<=6
??omega?=?kernel_matrix(Xs?kernel?kernel_pars);
??if?strcmp(type‘eig‘)
????[eigveceigvals]?=?eig(omega+2*eye(size(omega1)));?%?+?jitter?factor
????eigvals?=?diag(eigvals);
??elseif?strcmp(type‘eigs‘)
????eval(‘nb;‘‘nb=min(size(omega1)10);‘);
????[eigveceigvals]?=?eigs(omega+2*eye(size(omega1))nb);?%?+?jitter?factor
??elseif?strcmp(type‘eign‘)
????eval(‘nb;‘‘nb=min(size(omega1)10);‘);
????[eigveceigvals]?=?eign(omega+2*eye(size(omega1))nb);?%?+?jitter?factor
??end
??eigvals?=?(eigvals-2)/Nc;
??peff?=?eigvals>eps;
??eigvals?=?eigvals(peff);
??eigvec?=?eigvec(:peff);
end
??
%?Cmex
features?=?phitures(Xs‘X‘eigveceigvalskernel?kernel_pars);
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????2738??2003-02-21?22:39??LS_SVMlab\AFE.m
?????文件??????20200??2009-04-16?21:24??LS_SVMlab\all0416.mat
?????文件????????572??2009-03-28?16:15??LS_SVMlab\alphaandb.m
?????文件???????5785??2003-02-21?22:39??LS_SVMlab\bay_errorbar.m
?????文件???????2003??2003-02-21?22:39??LS_SVMlab\bay_initlssvm.m
?????文件??????10345??2003-02-21?22:39??LS_SVMlab\bay_lssvm.m
?????文件???????8187??2003-02-21?22:39??LS_SVMlab\bay_lssvmARD.m
?????文件???????9358??2003-02-21?22:39??LS_SVMlab\bay_modoutClass.m
?????文件???????5977??2003-02-21?22:39??LS_SVMlab\bay_optimize.m
?????文件???????4178??2003-02-21?22:39??LS_SVMlab\bay_rr.m
?????文件????????164??2005-04-15?21:53??LS_SVMlab\buffer.mc
?????文件???????5632??2003-02-21?22:39??LS_SVMlab\changelssvm.m
?????文件???????4245??2005-04-15?19:10??LS_SVMlab\code.asv
?????文件???????4245??2005-04-15?19:11??LS_SVMlab\code.m
?????文件???????2118??2003-02-21?22:39??LS_SVMlab\codedist_bay.m
?????文件????????756??2003-02-21?22:39??LS_SVMlab\codedist_hamming.m
?????文件???????2018??2003-02-21?22:39??LS_SVMlab\codedist_loss.m
?????文件???????4125??2003-02-21?22:39??LS_SVMlab\codelssvm.m
?????文件???????5197??2003-02-21?22:39??LS_SVMlab\code_ECOC.m
?????文件????????550??2003-02-21?22:39??LS_SVMlab\code_MOC.m
?????文件????????364??2003-02-21?22:39??LS_SVMlab\code_OneVsAll.m
?????文件????????555??2003-02-21?22:39??LS_SVMlab\code_OneVsOne.m
?????文件????????734??2009-03-28?16:26??LS_SVMlab\compufun.m
?????文件?????????32??2003-03-20?09:24??LS_SVMlab\Contents.m
?????文件???????8174??2003-02-21?22:39??LS_SVMlab\crossvalidate.m
?????文件????????757??2009-04-19?09:01??LS_SVMlab\data0419.mat
?????文件???????1011??2008-12-11?19:36??LS_SVMlab\datatest.mat
?????文件???????1606??2008-12-11?19:26??LS_SVMlab\datatrain.mat
?????文件???????1886??2003-02-21?22:39??LS_SVMlab\deltablssvm.m
?????文件???????3369??2003-02-21?22:39??LS_SVMlab\democlass.m
............此處省略83個文件信息
評論
共有 條評論