資源簡介
僅作為學習和練習的用途,不作為畢設以及其他商業用途。親測好用,挺不錯的資源,大家快來下載吧!挺有用的!需要的話可以來下載哦!

代碼片段和文件信息
function?[]?=?demo_1()
????close?all;
????clear;
????[pictureName]?=?uigetfile(‘*.jpg‘?‘請選擇圖片‘);
????pictureInit?=?init(pictureName);?
????tic;????????????%開始計時
????pictureCut?=?cut(pictureInit);
????pictureRo?=?rotate(pictureCut);
????pictureLo?=?location(pictureRo);
????char(pictureLo);
end
%圖像的預處理函數
function?[pictureOut]?=?init(pictureName)
????global?picture;
????picture?=?imread(pictureName);
????picture2Gray?=?rgb2gray(picture);????????????????%轉為灰度圖像
%?????figure
%?????subplot(1?3?1)imshow(picture);title(‘原始圖像‘);??????????
%?????subplot(1?3?2)imshow(picture2Gray);title(‘原始圖像的灰度圖‘);
%?????subplot(1?3?3)imhist(picture2Gray);title(‘原始圖像的灰度直方圖‘);colorbar;
????
%?????grayEn?=?imadjust(picture2Gray?[]?[0.25?0.75]?2);???????%灰度圖增強
????grayEn?=?histeq(picture2Gray);??????????????%灰度圖均勻化
%?????figure?
%?????subplot(1?2?1)?imshow(grayEn);title(‘灰度增強之后的圖像‘);
%?????subplot(1?2?2)?imhist(grayEn);title(‘灰度增強之后的直方圖‘);
????%邊緣檢測
????grayEn?=?imfilter(grayEn?fspecial(‘average‘?3));??????%均值平滑增強之后的灰度圖像
????pictureOut?=?edge(grayEn?‘sobel‘);?????
%?????figure
%?????imshow(pictureOut)?title(‘sobel邊緣檢測之后的圖像‘);
????close?all;
end
%圖像的初步定位
function?[pictureOut]?=?cut(pictureIn)
????global?picture;
????%腐蝕處理去除邊界點
????se1?=?[1?;?1?;?1];
????pictureErode?=?imerode(pictureIn?se1);
%?????figure?imshow(pictureErode)?title(‘邊緣檢測+腐蝕的圖像‘);?
????%閉運算,先膨脹后腐蝕去除孔洞,可以平滑圖像
????se2?=?strel(‘rectangle‘?[48?48]);
????pictureClose?=?imclose(pictureErode?se2);
%?????figure?imshow(pictureClose)?title(‘經過腐蝕+開運算后的圖像‘);?
????pictureCut?=?bwareaopen(pictureClose?10000);????????????????????%把小面積去掉
????pictureCut?=?removeLargeArea(pictureCut?50000);?????????????%把大面積去掉
%?????figure?imshow(pictureCut)?title(‘初步裁剪完之后的圖像‘);
????%?定位車牌的區域
????pictureRe?=?regionprops(pictureCut?‘area‘?‘boundingbox‘);
%?????areas?=?[pictureRe.Area];????????????????????????????????????????????????????%將面積對象保存到areas里
????rects?=?cat(1?pictureRe.BoundingBox);???????????????????????????????%將面積對象的邊界條件鏈接并保存到rects,順序為[起始點x坐標?起始點y坐標?面積對象長度(x)?面積對象寬度(y)]??????
%?????figure?imshow(pictureCut)?title(‘紅色框標記完之后的圖像‘);??
????rectangle(‘position‘?rects(1?:)?‘EdgeColor‘?‘r‘);?????????????????????%定位車牌區域,并用紅色的框標記
????pictureOut?=?imcrop(picture?rects(1?:));???????????????????????????????%按照紅線框切割車牌區域
%?????figure?imshow(pictureOut)?title(‘裁剪完之后的圖像‘);
????close?all;
end
%?對傾斜的角度進行調整
function?[pictureOut]?=?rotate(pictureIn)
????pictureGray1?=?rgb2gray(pictureIn);
????%水平方向調整
????T=affine2d([0?1?0;1?0?0;0?0?1]);
????pictureTr=imwarp(pictureGray1T);??????????????%?圖像轉置,順時針旋轉90°調整水平方向
????theta?=?-20?:?20;??????????????????????????????????????????%設置傾斜角度的范圍
????r1?=?radon(pictureTr?theta);????????????????????????%radon變換確定傾斜角
????result1?=?sum(abs(diff(r1))?1);??????????????????????%求出行倒數絕對值的累加和,最大的對應傾斜角
????rot1?=?find(result1==max(result1))-21;
????pictureRo?=?imrotate(pictureIn?rot1);
%?????figure?
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2018-07-30?13:17??基于matlab+模板匹配的車牌識別\
?????文件?????2704822??2018-07-30?10:16??基于matlab+模板匹配的車牌識別\1.gif
?????文件???????78294??2018-07-23?14:21??基于matlab+模板匹配的車牌識別\1.jpg
?????文件??????106063??2018-07-23?14:36??基于matlab+模板匹配的車牌識別\2.jpg
?????文件???????93395??2018-07-24?15:31??基于matlab+模板匹配的車牌識別\3.jpg
?????文件????????7084??2018-07-30?00:12??基于matlab+模板匹配的車牌識別\demo_1.m
?????文件?????????900??2018-07-29?23:33??基于matlab+模板匹配的車牌識別\shibiehanzi.m
?????文件????????2146??2018-07-29?23:07??基于matlab+模板匹配的車牌識別\shibiehunhe.m
?????文件????????1719??2018-07-29?23:07??基于matlab+模板匹配的車牌識別\shibiezimu.m
?????目錄???????????0??2018-07-30?09:27??基于matlab+模板匹配的車牌識別\zifu\
?????文件?????????787??2018-07-29?16:41??基于matlab+模板匹配的車牌識別\zifu\1.jpg
?????文件?????????902??2018-07-29?16:44??基于matlab+模板匹配的車牌識別\zifu\10.jpg
?????文件?????????872??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\11.jpg
?????文件?????????880??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\12.jpg
?????文件?????????807??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\13.jpg
?????文件?????????798??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\14.jpg
?????文件?????????729??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\15.jpg
?????文件?????????784??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\16.jpg
?????文件?????????867??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\17.jpg
?????文件?????????790??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\18.jpg
?????文件?????????656??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\19.jpg
?????文件?????????471??2018-07-29?16:41??基于matlab+模板匹配的車牌識別\zifu\2.jpg
?????文件?????????888??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\20.jpg
?????文件?????????544??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\21.jpg
?????文件?????????792??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\22.jpg
?????文件?????????863??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\23.jpg
?????文件?????????768??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\24.jpg
?????文件?????????847??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\25.jpg
?????文件?????????933??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\26.jpg
?????文件?????????964??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\27.jpg
?????文件?????????554??2018-07-29?23:46??基于matlab+模板匹配的車牌識別\zifu\28.jpg
............此處省略25個文件信息
評論
共有 條評論