91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

資源簡介

詳盡的PCA算法對TE過程的故障診斷分析,內(nèi)含有部分故障數(shù)據(jù),可供調(diào)試使用,對做故障診斷的非常有幫助。

資源截圖

代碼片段和文件信息

%%TE過程的傳統(tǒng)主元分析在Matlab中的仿真程序
%建立模型:
%載入模型數(shù)據(jù)
Xtrain?=?load(‘d0_te.dat‘);?
Xtrain?=?double(Xtrain);

%載入測試數(shù)據(jù)
Xtest?=?load(‘d01.dat‘);
Xtest?=?double(Xtest);

%標(biāo)準(zhǔn)化處理
X_mean?=?mean(Xtrain);?????????????????????????????
X_std?=?std(Xtrain);???????????????????????????????
[X_rowX_col]?=?size(Xtrain);???????????????????
%?for?i?=?1:X_col
%?????Xtrain(:i)?=?(Xtrain(:i)?-?X_mean(i)./X_std(i));
%?????Xtest(:i)?=?(Xtest(:i)?-?X_mean(i)./X_std(i));
%?end?????
Xtrain?=?(Xtrain?-?repmat(X_meanX_row1))./repmat(X_stdX_row1);

%求協(xié)方差矩陣,并對協(xié)方差矩陣進行特征分解
sigmaXtrain?=?cov(Xtrain);
[Tlamda]?=?eig(sigmaXtrain);??????
%?disp(‘特征根(由小到大)‘);
%?disp(lamda);
%?disp(‘特征向量:‘);
%?disp(T);????????????????????????????????????????????

%取對角元素,即lamda值,并上下反轉(zhuǎn)使其從大到小排列,主元個數(shù)初值為1,若累計貢獻率小于85%則增加主元個

?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件??????416052??2006-10-27?21:22??d00.dat
?????文件??????799680??2006-10-27?21:36??d00_te.dat
?????文件??????399840??2006-10-27?21:34??d01.dat
?????文件??????799680??2006-10-27?21:41??d01_te.dat
?????文件??????225140??2014-02-25?10:40??d02.dat
?????文件??????799680??2006-10-27?21:47??d02_te.dat
?????文件??????399840??2006-10-27?21:49??d03.dat
?????文件??????799680??2006-10-27?21:52??d03_te.dat
?????文件??????399840??2006-10-27?21:54??d04.dat
?????文件??????799680??2006-10-27?22:12??d04_te.dat
?????文件??????399840??2006-10-27?22:14??d05.dat
?????文件??????799680??2006-10-27?22:22??d05_te.dat
?????文件??????399840??2006-10-27?22:24??d06.dat
?????文件??????799680??2006-10-27?22:27??d06_te.dat
?????文件??????399840??2006-10-27?22:27??d07.dat
?????文件??????799680??2006-10-28?08:19??d07_te.dat
?????文件??????399840??2006-10-28?08:19??d08.dat
?????文件??????799680??2006-10-28?08:19??d08_te.dat
?????文件??????399840??2006-10-28?08:19??d09.dat
?????文件??????399840??2006-10-28?08:20??d10.dat
?????文件????????3578??2014-09-10?16:58??PCA_TE_myself.m

評論

共有 條評論