資源簡介
利用大量圖像數據對卷積神經網絡算法進行訓練,通過卷積、池化、下采樣以及全連接層訓練后的卷積神經網絡在圖像識別精度越來越高。
代碼片段和文件信息
function?net?=?cnnapplygrads(net?opts)
????for?l?=?2?:?numel(net.layers)
????????if?strcmp(net.layers{l}.type?‘c‘)
????????????for?j?=?1?:?numel(net.layers{l}.a)
????????????????for?ii?=?1?:?numel(net.layers{l?-?1}.a)
????????????????????net.layers{l}.k{ii}{j}?=?net.layers{l}.k{ii}{j}?-?opts.alpha?*?net.layers{l}.dk{ii}{j};
????????????????end
????????????????net.layers{l}.b{j}?=?net.layers{l}.b{j}?-?opts.alpha?*?net.layers{l}.db{j};
????????????end
????????end
????end
????net.ffW?=?net.ffW?-?opts.alpha?*?net.dffW;
????net.ffb?=?net.ffb?-?opts.alpha?*?net.dffb;
end
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件?????????575??2017-04-20?16:23??cnnapplygrads.m
?????文件????????2141??2017-04-20?16:24??cnnbp.m
?????文件????????1774??2017-04-20?16:24??cnnff.m
?????文件????????1768??2017-04-20?16:24??cnnsetup.m
?????文件?????????193??2017-04-20?16:24??cnntest.m
?????文件?????????845??2017-04-20?16:24??cnntrain.m
?????文件?????????981??2017-04-20?16:24??test_example_CNN.m
評論
共有 條評論