91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

資源簡介

the folder gives information about the image forgery detection. detection is made by examining the sift and ransac features of the image. color processing is done as a preprocessing step.

資源截圖

代碼片段和文件信息

function?[Lhits]?=?ADABOOST_te(adaboost_modelte_func_handletest_set...
????????????????????????????????true_labels)
%
%?ADABOOST?TESTING
%
%??[Lhits]?=?ADABOOST_te(adaboost_modelte_func_handletrain_set
%?????????????????????????true_labels)
%
%???????????‘te_func_handle‘?is?a?handle?to?the?testing?function?of?a
%???????????learning?(weak)?algorithm?whose?prototype?is?shown?below.
%
%???????????[Lhitserror_rate]?=?test_func(modeltest_setsample_weightstrue_labels)
%????????????????????model:?the?output?of?train_func
%????????????????????test_set:?a?KxD?dimensional?matrix?each?of?whose?row?is?a
%????????????????????????testing?sample?in?a?D?dimensional?feature?space.
%????????????????????sample_weights:??a?Dx1?dimensional?vector?the?i-th?entry?
%????????????????????????of?which?denotes?the?weight?of?the?i-th?sample.
%????????????????????true_labels:?a?Dx1?dimensional?vector?the?i-th?entry?of?which
%????????????????????????is?the?label?of?the?i-th?sample.
%????????????????????L:?a?Dx1-array?with?the?predicted?labels?of?the?samples.
%????????????????????hits:?number?of?hits?calculated?with?the?comparison?of?L?and
%????????????????????????true_labels.
%????????????????????error_rate:?number?of?misses?divided?by?the?number?of?samples.
%
%???????????It?is?the?corresponding?testing?
%???????????module?of?the?function?that?is?specified?in?the?training?phase.
%???????????‘test_set‘?is?a?NxD?matrix?where?N?is?the?number?of?samples
%???????????in?the?test?set?and?D?is?the?dimension?of?the?feature?space.
%???????????‘true_labels‘?is?a?Nx1?matrix?specifying?the?class?label?of
%???????????each?corresponding?sample‘s?features?(each?row)?in?‘test_set‘.
%???????????‘a(chǎn)daboost_model‘?is?the?model?that?is?generated?by?the?function
%???????????‘ADABOOST_tr‘.
%
%???????????‘L‘?is?the?likelihoods?that?are?assigned?by?the?‘ADABOOST_te‘.
%???????????‘hits‘?is?the?number?of?correctly?predicted?labels.
%
%????????Specific?Properties?That?Must?Be?Satisfied?by?The?Function?pointed
%????????by?‘func_handle‘
%????????------------------------------------------------------------------
%
%?Notice:?Labels?must?be?positive?integer?values?from?1?upto?the?number?classes.
%
%?Bug?Reporting:?Please?contact?the?author?for?bug?reporting?and?comments.
%
%?Cuneyt?Mertayak
%?email:?cuneyt.mertayak@gmail.com
%?version:?1.0
%?date:?21/05/2007
%

hypothesis_n?=?length(adaboost_model.weights);
sample_n?=?size(test_set1);
class_n?=?length(unique(true_labels));
temp_L?=?zeros(sample_nclass_nhypothesis_n); %?likelihoods?for?each?weak?classifier

%?for?each?weak?classifier?likelihoods?of?test?samples?are?collected
for?i=1:hypothesis_n
[temp_L(::i)hitserror_rate]?=?te_func_handle(adaboost_model.parameters{i}...
?test_setones(sample_n1)true_labels);
temp_L(::i)?=?temp_L(::i)*adaboost_model.weights(i);
end

L?=?sum(temp_L3);
hits?=?sum(likelihood2class(L)==true_labels);


?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----

?????文件?????741072??2000-01-01?01:00??image?forgery?with?siftand?ransac\image?forgery\1.jpg

?????文件?????703685??2002-01-23?15:18??image?forgery?with?siftand?ransac\image?forgery\3.jpg

?????文件???????2916??2008-09-03?13:17??image?forgery?with?siftand?ransac\image?forgery\ADABOOST_te.m

?????文件???????4452??2008-09-03?13:17??image?forgery?with?siftand?ransac\image?forgery\ADABOOST_tr.m

?????文件????????415??2013-12-01?21:44??image?forgery?with?siftand?ransac\image?forgery\adaptivethreshold.m

?????文件????????461??2011-01-25?15:15??image?forgery?with?siftand?ransac\image?forgery\appendimages.m

?????文件???????2314??2009-09-08?23:37??image?forgery?with?siftand?ransac\image?forgery\colImgSeg.m

?????文件????????800??2013-12-01?21:45??image?forgery?with?siftand?ransac\image?forgery\CreateDatabase.m

?????文件???????1848??2011-11-01?08:18??image?forgery?with?siftand?ransac\image?forgery\demo.m

?????文件??????30673??2011-10-20?06:42??image?forgery?with?siftand?ransac\image?forgery\erode.jpg

?????文件???????4696??2013-01-25?14:32??image?forgery?with?siftand?ransac\image?forgery\example.asv

?????文件???????4698??2013-01-25?14:28??image?forgery?with?siftand?ransac\image?forgery\example.m

?????文件????2057049??2013-11-01?11:51??image?forgery?with?siftand?ransac\image?forgery\Exposing?Digital?Image?Forgeries?by?Illumination.pdf

?????文件?????188440??2001-09-17?16:22??image?forgery?with?siftand?ransac\image?forgery\face.jpg

?????文件????????794??2011-11-01?07:42??image?forgery?with?siftand?ransac\image?forgery\face_detection.asv

?????文件???????7411??2013-08-11?11:11??image?forgery?with?siftand?ransac\image?forgery\face_detection.m

?????文件????????460??2014-02-27?10:16??image?forgery?with?siftand?ransac\image?forgery\findHomography.m

?????文件?????103647??2011-01-16?22:50??image?forgery?with?siftand?ransac\image?forgery\hall1.JPG

?????文件?????102984??2011-01-16?22:50??image?forgery?with?siftand?ransac\image?forgery\hall2.JPG

?????文件???????1934??2014-02-27?10:16??image?forgery?with?siftand?ransac\image?forgery\imMosaic.m

?????文件??????14227??2009-09-08?23:37??image?forgery?with?siftand?ransac\image?forgery\Input.JPG

?????文件????????342??2013-12-01?21:37??image?forgery?with?siftand?ransac\image?forgery\knn.m

?????文件???????1334??2011-03-24?11:57??image?forgery?with?siftand?ransac\image?forgery\license.txt

?????文件????????241??2014-02-27?10:16??image?forgery?with?siftand?ransac\image?forgery\likelihood2class.m

?????文件???????3537??2013-10-15?09:19??image?forgery?with?siftand?ransac\image?forgery\main.m

?????文件???????7050??2013-12-02?22:09??image?forgery?with?siftand?ransac\image?forgery\mainproject.m

?????文件????????260??2014-02-08?12:33??image?forgery?with?siftand?ransac\image?forgery\mosaicTest.asv

?????文件????????318??2014-02-08?12:34??image?forgery?with?siftand?ransac\image?forgery\mosaicTest.m

?????文件??????14530??2014-02-27?11:07??image?forgery?with?siftand?ransac\image?forgery\mosaic_a.jpg

?????文件??????50481??2011-01-25?15:06??image?forgery?with?siftand?ransac\image?forgery\mosaic_hall.jpg

............此處省略47個文件信息

評論

共有 條評論