資源簡介
可實現SVM函數曲線擬合,支持向量機曲線逼近,多類分類等等強大功能,無需修改源程序,直接可用
代碼片段和文件信息
%?支持向量機用于多類模式分類?-?必須選擇最優參數?GammaC
%?工具箱:OSU_SCM3.00
%?使用平臺:Matlab6.5
%?作者:陸振波,海軍工程大學
%?歡迎同行來信交流與合作,更多文章與程序下載請訪問我的個人主頁
%?電子郵件:luzhenbo@sina.com
%?個人主頁:luzhenbo.88uu.com.cn
clc
clear
close?all
%---------------------------------------------------
%?產生訓練樣本與測試樣本,每一列為一個樣本
n1?=?[rand(35)rand(35)+1rand(35)+2];
x1?=?[1*ones(15)2*ones(15)3*ones(15)];?????%?特別注意:這里的目標與神經網絡不同
n2?=?[rand(35)rand(35)+1rand(35)+2];
x2?=?[1*ones(15)2*ones(15)3*ones(15)];?????%?特別注意:這里的目標與神經網絡不同
xn_train?=?n1;??????????%?訓練樣本
dn_train?=?x1;??????????%?訓練目標
xn_test?=?n2;???????????%?測試樣本
dn_test?=?x2;???????????%?測試目標
%---------------------------------------------------
%?參數設置
Samples1?=?xn_train;?
Labels1?=?dn_train;
Samples2?=?xn_test;?
Labels2?=?dn_test;
Gamma?=?1;
C?=?1;
%---------------------------------------------------
%?訓練與測試
%?訓練
%?輸出參數即是訓練結果,其物理意義相當于網格結構參數,用于測試及新樣本識別時的輸入
%?這里使用?RbfSVC?函數訓練,還可以使用?LinearSVC?PolySVC?等函數來訓練
[AlphaY?SVs?Bias?Parameters?nSV?nLabel]?=?...
????RbfSVC(Samples1?Labels1?Gamma?C);
%?測試
[ClassRate?DecisionValue?Ns?ConfMatrix?PreLabels]?=?...
????SVMTest(Samples2?Labels2?AlphaY?SVs?BiasParameters?nSV?nLabel);
%---------------------------------------------------
%?輸出參數
%?ClassRate??????-??正確分類率?1x1;
%?DecisionValue??-??判別函數的輸出(僅對2類問題有效)?1xN;
%?Ns?????????????-??每一類的樣本數?1x(L+1)?或?1xL;當為1x(L+1)時,最后一個元素不屬于任何一類
%?ConfMatrix?????-??錯判矩陣?(L+1)x(L+1)?or?LxL?這里?ConfMatrix(ij)?=?P(X?in?j|?X?in?i);
%???????????????????當為?(L+1)x(L+1)?時,最后一行和最后一列是那些不屬于任何一類的樣本
%?PreLabels??????-??實際測試輸出?1xN.?
%---------------------------------------------------
%?結果統計
Result?=?~abs(PreLabels-Labels2)???????%?正確分類顯示為1
Percent?=?sum(Result)/length(Result)???%?正確分類率
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????2738??2003-02-21?22:39??SVM--function?available\LS_SVMlab\AFE.m
?????文件???????5785??2003-02-21?22:39??SVM--function?available\LS_SVMlab\bay_errorbar.m
?????文件???????2003??2003-02-21?22:39??SVM--function?available\LS_SVMlab\bay_initlssvm.m
?????文件??????10345??2003-02-21?22:39??SVM--function?available\LS_SVMlab\bay_lssvm.m
?????文件???????8187??2003-02-21?22:39??SVM--function?available\LS_SVMlab\bay_lssvmARD.m
?????文件???????9358??2003-02-21?22:39??SVM--function?available\LS_SVMlab\bay_modoutClass.m
?????文件???????5977??2003-02-21?22:39??SVM--function?available\LS_SVMlab\bay_optimize.m
?????文件???????4178??2003-02-21?22:39??SVM--function?available\LS_SVMlab\bay_rr.m
?????文件????????164??2005-04-15?21:53??SVM--function?available\LS_SVMlab\buffer.mc
?????文件???????5632??2003-02-21?22:39??SVM--function?available\LS_SVMlab\changelssvm.m
?????文件???????4245??2005-04-15?19:10??SVM--function?available\LS_SVMlab\code.asv
?????文件???????4245??2005-04-15?19:11??SVM--function?available\LS_SVMlab\code.m
?????文件???????2118??2003-02-21?22:39??SVM--function?available\LS_SVMlab\codedist_bay.m
?????文件????????756??2003-02-21?22:39??SVM--function?available\LS_SVMlab\codedist_hamming.m
?????文件???????2018??2003-02-21?22:39??SVM--function?available\LS_SVMlab\codedist_loss.m
?????文件???????4125??2003-02-21?22:39??SVM--function?available\LS_SVMlab\codelssvm.m
?????文件???????5197??2003-02-21?22:39??SVM--function?available\LS_SVMlab\code_ECOC.m
?????文件????????550??2003-02-21?22:39??SVM--function?available\LS_SVMlab\code_MOC.m
?????文件????????364??2003-02-21?22:39??SVM--function?available\LS_SVMlab\code_OneVsAll.m
?????文件????????555??2003-02-21?22:39??SVM--function?available\LS_SVMlab\code_OneVsOne.m
?????文件?????????32??2003-03-20?09:24??SVM--function?available\LS_SVMlab\Contents.m
?????文件???????8174??2003-02-21?22:39??SVM--function?available\LS_SVMlab\crossvalidate.m
?????文件???????1886??2003-02-21?22:39??SVM--function?available\LS_SVMlab\deltablssvm.m
?????文件???????3369??2003-02-21?22:39??SVM--function?available\LS_SVMlab\democlass.m
?????文件???????3864??2003-02-21?22:39??SVM--function?available\LS_SVMlab\demofun.m
?????文件???????4748??2005-09-13?21:00??SVM--function?available\LS_SVMlab\demomodel.m
?????文件???????2259??2003-03-11?15:50??SVM--function?available\LS_SVMlab\demo_fixedclass.m
?????文件???????3099??2003-02-21?22:39??SVM--function?available\LS_SVMlab\demo_fixedsize.m
?????文件???????3337??2003-02-21?22:39??SVM--function?available\LS_SVMlab\demo_yinyang.m
?????文件???????3507??2003-02-21?22:39??SVM--function?available\LS_SVMlab\denoise_kpca.m
............此處省略422個文件信息
- 上一篇:BP Match 基于置信傳播的立體匹配算法
- 下一篇:單一圖像去霧
評論
共有 條評論