資源簡介
壓縮包含源代碼和原理文獻(xiàn),可以求解n對象博弈的混合策略納什均衡,原作者是印度Bapi Chatterjee

代碼片段和文件信息
%?The?function?gamer?creates?the?objective?function?and?the?constraints?for
%?the?optimization?problem?to?supply?it?to?fmincon.
function?[xfvalexitflagoutput]?=?gamer(nUspIsublbx0AeqbeqpayU)
????function?F?=?myfun(x)
????????Funct?=?0;
????????prod?=?1;
????????for?i?=?1?:?n
????????????Funct?=?Funct?+?x(s+i);
????????end
????????for?i?=?1?:?p
????????????for?j?=?1?:?n
????????????????prod?=?prod?*?x(I(ij));
????????????end
????????????Funct?=?Funct?-?Us(i)?*?prod;
????????????prod?=?1;
????????end
????????F?=?Funct;
????end
????function?[c?ceq]?=?confun(x)
????????C?=?zeros(s1);
????????for?i?=?1?:?s
????????????C(i)?=?-x(pay(i));
????????????for?t?=?1?:?n
????????????????add?=?0;
????????????????for?j?=?1?:?p
????????????????????prd?=?1;
????????????????????for?k?=?1?:?n
????????????????????????if?i?==?I(jk)
????????????????????????????prd?=?prd?*?U(jk);
????????????????????????else
????????????????????????????prd?=?prd?*?x(I(jk));
????????????????????????end
????????????????????end
????????????????????if?I(jt)?~=?i
????????????????????????prd?=?0;
????????????????????end
????????????????????add?=?add?+?prd;
????????????????end
????????????????C(i)?=?add?+?C(i);
????????????end
????????end
????????c?=?C;
????????ceq?=?[];
????end
options?=?optimset(‘Display‘‘off‘);
warning?‘off‘?‘a(chǎn)ll‘;
[xfvalexitflagoutput]?=?fmincon(@myfunx0[][]Aeqbeqlbub@confunoptions);
end
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????文件?????458464??2020-08-23?21:29??npg\An?optimization?formulation?to?compute?Nash?equilibrium?in?finite?games.pdf
?????文件???????1315??2014-02-12?13:22??npg\license.txt
?????文件???????1473??2010-06-06?11:33??npg\npg\gamer.m
?????文件???????3610??2010-06-06?11:49??npg\npg\npg.m
?????目錄??????????0??2020-08-20?20:13??npg\npg
?????目錄??????????0??2020-08-24?21:08??npg
-----------?---------??----------?-----??----
???????????????464862????????????????????6
- 上一篇:matlab寫的計(jì)數(shù)器
- 下一篇:Matlab三維曲線擬合源碼
評論
共有 條評論