-
大小: 6KB文件類型: .zip金幣: 2下載: 0 次發(fā)布日期: 2021-05-28
- 語言: 其他
- 標(biāo)簽: SVM??機(jī)器學(xué)習(xí)??多輸出??
資源簡介
傳統(tǒng)的SVM模型只能實現(xiàn)單輸出,即輸入多個特征,返回單一的特征。此代碼實現(xiàn)輸入多個特征輸出多個特征。即多輸入多輸出SVM模型。

代碼片段和文件信息
function?RESULTS?=?assessment(LabelsPreLabelspar)
%
%???function?RESULTS?=?assessment(LabelsPreLabelspar)
%
%???INPUTS:
%
%???Labels?????????:?A?vector?containing?the?true?(actual)?labels?for?a?given?set?of?sample.
%???PreLabels??????:?A?vector?containing?the?estimated?(predicted)?labels?for?a?given?set?of?sample.
% par ???:?‘class‘?or?‘regress‘
%
%???OUTPUTS:?(all?contained?in?struct?RESULTS)
%
%???ConfusionMatrix:?Confusion?matrix?of?the?classification?process?(True?labels?in?columns?predictions?in?rows)
%???Kappa??????????:?Estimated?Cohen‘s?Kappa?coefficient
%???OA?????????????:?Overall?Accuracy
%???varKappa???????:?Variance?of?the?estimated?Kappa?coefficient
%???Z??????????????:?A?basic?Z-score?for?significance?testing?(considering?that?Kappa?is?normally?distributed)
%???CI?????????????:?Confidence?interval?at?95%?for?the?estimated?Kappa?coefficient
%???Wilcoxon?sign?test?and?McNemar‘s?test?of?significance?differences
%
%???Gustavo?Camps-Valls?2007(c)
%???gcamps@uv.es
%???
%???Formulae?in:
%???Assessing?the?Accuracy?of?Remotely?Sensed?Data
%???by?Russell?G?Congalton?Kass?Green.?CRC?Press
%
switch?lower(par)
case?{‘class‘}
Etiquetas?=?union(LabelsPreLabels);?????%?Class?labels?(usually?123....?but?can?work?with?text?labels)
NumClases?=?length(Etiquetas);?%?Number?of?classes
%?Compute?confusion?matrix
????ConfusionMatrix?=?zeros(NumClases);
for?i=1:NumClases
????????for?j=1:NumClases
????????????????ConfusionMatrix(ij)?=?length(find(PreLabels==Etiquetas(i)?&?Labels==Etiquetas(j)));
????????end;
end;
??????????
%?Compute?Overall?Accuracy?and?Cohen‘s?kappa?statistic
n??????=?sum(ConfusionMatrix(:));?????????????????????%?Total?number?of?samples
PA?????=?sum(diag(ConfusionMatrix));
OA?????=?PA/n;
%?Estimated?Overall?Cohen‘s?Kappa?(suboptimal?implementation)
npj?=?sum(ConfusionMatrix1);
nip?=?sum(ConfusionMatrix2);
PE??=?npj*nip;
????if?(n*PA-PE)?==?0?&&?(n^2-PE)?==?0
????????%?Solve?indetermination
????????warning(‘0?divided?by?0‘)
????????Kappa?=?1;
????else
???? Kappa??=?(n*PA-PE)/(n^2-PE);
????end
%?Cohen‘s?Kappa?Variance
theta1?=?OA;
theta2?=?PE/n^2;
theta3?=?(nip‘+npj)?*?diag(ConfusionMatrix)??/?n^2;
suma4?=?0;
for?i=1:NumClases
for?j=1:NumClases
suma4?=?suma4?+?ConfusionMatrix(ij)*(nip(i)?+?npj(j))^2;
end;
end;
theta4?=?suma4/n^3;
varKappa?=?(?theta1*(1-theta1)/(1-theta2)^2?????+?????2*(1-theta1)*(2*theta1*theta2-theta3)/(1-theta2)^3??????+?????(1-theta1)^2*(theta4-4*theta2^2)/(1-theta2)^4??)/n;
Z?=?Kappa/sqrt(varKappa);
CI?=?[Kappa?+?1.96*sqrt(varKappa)?Kappa?-?1.96*sqrt(varKappa)];
if?NumClases==2
????%?Wilcoxon?test?at?95%?confidence?interval
????[p1h1]?=?signrank(LabelsPreLabels);
????if?h1==0
????????RESULTS.WilcoxonComment =?‘The?null?hypothesis?of?both?distributions?come?from?the?same?median?can?be?rejected?at?the?5%?level.‘;
????elseif?h1==1
????????RESULTS.WilcoxonComment =?‘Th
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2016-02-16?07:39??msvr-2-1\
?????文件????????2182??2016-02-16?07:37??msvr-2-1\demoMSVR.m
?????文件????????4689??2010-09-15?09:18??msvr-2-1\assessment.m
?????文件????????1642??2010-09-15?09:18??msvr-2-1\kernelmatrix.m
?????文件????????3312??2016-02-16?07:39??msvr-2-1\msvr.m
?????文件?????????198??2010-09-15?09:18??msvr-2-1\scale.m
評論
共有 條評論