資源簡(jiǎn)介
svm工具箱中有非常詳細(xì)的svm的分類、回歸、預(yù)測(cè)的源代碼,并且有相應(yīng)的例子,對(duì)需要使用svm的同志非常的有幫助!希望對(duì)大家有所啟發(fā)和幫助!

代碼片段和文件信息
%?支持向量機(jī)用于多類模式分類?-?必須選擇最優(yōu)參數(shù)?gamsig2
%?工具箱:LS_SVMlab
%?使用平臺(tái):Matlab6.5
%?作者:陸振波,海軍工程大學(xué)
%?歡迎同行來信交流與合作,更多文章與程序下載請(qǐng)?jiān)L問我的個(gè)人主頁
%?電子郵件:luzhenbo@yahoo.com.cn
%?個(gè)人主頁:http://luzhenbo.88uu.com.cn
clc
clear
close?all
%---------------------------------------------------
%?產(chǎn)生訓(xùn)練樣本與測(cè)試樣本,每一列為一個(gè)樣本
n1?=?[rand(35)rand(35)+1rand(35)+2];
x1?=?[1*ones(15)2*ones(15)3*ones(15)];?????%?特別注意:這里的目標(biāo)與神經(jīng)網(wǎng)絡(luò)不同
n2?=?[rand(31)];
x2?=?[1*ones(11)];?????%?特別注意:這里的目標(biāo)與神經(jīng)網(wǎng)絡(luò)不同
xn_train?=?n1;??????????%?訓(xùn)練樣本
dn_train?=?x1;??????????%?訓(xùn)練目標(biāo)
xn_test?=?n2;???????????%?測(cè)試樣本
dn_test?=?x2;???????????%?測(cè)試目標(biāo)
%---------------------------------------------------
%?參數(shù)設(shè)置
X?=?xn_train‘;
Y?=?dn_train‘;
Xt?=?xn_test‘;
Yt?=?dn_test‘;
type?=?‘c‘;
kernel_type?=?‘RBF_kernel‘;
gam?=?2;
sig2?=?2;
preprocess?=?‘preprocess‘;
codefct?=?‘code_MOC‘;???????????
%?將“多類”轉(zhuǎn)換成“兩類”的編碼方案
%?1.?Minimum?Output?Coding?(code_MOC)?
%?2.?Error?Correcting?Output?Code?(code_ECOC)
%?3.?One?versus?All?Coding?(code_OneVsAll)
%?4.?One?Versus?One?Coding?(code_OneVsOne)?
%---------------------------------------------------
%?編碼
[Yccodebookold_codebook]?=?code(Ycodefct);
%---------------------------------------------------
%?交叉驗(yàn)證優(yōu)化參數(shù)
%[gamsig2]?=?tunelssvm({XYctypegamsig2kernel_typepreprocess})
%---------------------------------------------------
%?訓(xùn)練與測(cè)試
[alphab]?=?trainlssvm({XYctypegamsig2kernel_typepreprocess});???????????%?訓(xùn)練
Yd0?=?simlssvm({XYctypegamsig2kernel_typepreprocess}{alphab}Xt);??????%?分類
%---------------------------------------------------
%?解碼
Yd?=?code(Yd0old_codebook[]codebook);
%---------------------------------------------------
%?結(jié)果統(tǒng)計(jì)
Result?=?~abs(Yd-Yt)???????????????%?正確分類顯示為1
Percent?=?sum(Result)/length(Result)???%?正確分類率
%---------------------------------------------------
%?注意:以這兩種寫法等價(jià)
%?--?1?--
%?[Yccodebookold_codebook]?=?code(Y?codefct)
%?[alpha?b]?=?trainlssvm({XYctypegamsig2kernelpreprocess})
%?Yd0?=?simlssvm({XYctypegamsig2kernel}?{alphab}?Xt)
%?Yd?=?code(Yd0old_codebook[]codebook)
%?--?2?--
%?model?=?initlssvm(XYtypegamsig2kernelpreprocess)
%?model?=?changelssvm(model‘codetype‘codefct)
%?model?=?trainlssvm(model)
%?Yd?=?simlssvm(model?Xt)
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????文件???????2523??2007-05-25?14:37??SVM工具箱\Classification_LS_SVMlab.m
?????文件???????2075??2007-03-15?14:09??SVM工具箱\Classification_OSU_SVM.m
?????文件???????2351??2007-03-15?14:09??SVM工具箱\Classification_stprtool.m
?????文件???????1542??2007-03-15?14:09??SVM工具箱\Classification_SVM_SteveGunn.m
?????文件???????2117??2008-10-05?19:36??SVM工具箱\Regression_SVM_SteveGunn.m
?????文件???????5148??2007-01-06?11:20??SVM工具箱\四種支持向量機(jī)工具箱使用要點(diǎn).txt
?????文件????????655??2007-03-15?14:09??SVM工具箱\文件夾說明.txt
?????文件???????2738??2003-02-21?22:39??SVM工具箱\LS_SVMlab\AFE.m
?????文件???????5785??2003-02-21?22:39??SVM工具箱\LS_SVMlab\bay_errorbar.m
?????文件???????2003??2003-02-21?22:39??SVM工具箱\LS_SVMlab\bay_initlssvm.m
?????文件??????10345??2003-02-21?22:39??SVM工具箱\LS_SVMlab\bay_lssvm.m
?????文件???????8187??2003-02-21?22:39??SVM工具箱\LS_SVMlab\bay_lssvmARD.m
?????文件???????9358??2003-02-21?22:39??SVM工具箱\LS_SVMlab\bay_modoutClass.m
?????文件???????5977??2003-02-21?22:39??SVM工具箱\LS_SVMlab\bay_optimize.m
?????文件???????4178??2003-02-21?22:39??SVM工具箱\LS_SVMlab\bay_rr.m
?????文件????????164??2005-04-15?21:53??SVM工具箱\LS_SVMlab\buffer.mc
?????文件???????5632??2003-02-21?22:39??SVM工具箱\LS_SVMlab\changelssvm.m
?????文件???????4245??2005-04-15?19:10??SVM工具箱\LS_SVMlab\code.asv
?????文件???????4245??2005-04-15?19:11??SVM工具箱\LS_SVMlab\code.m
?????文件???????2118??2003-02-21?22:39??SVM工具箱\LS_SVMlab\codedist_bay.m
?????文件????????756??2003-02-21?22:39??SVM工具箱\LS_SVMlab\codedist_hamming.m
?????文件???????2018??2003-02-21?22:39??SVM工具箱\LS_SVMlab\codedist_loss.m
?????文件???????4125??2003-02-21?22:39??SVM工具箱\LS_SVMlab\codelssvm.m
?????文件???????5197??2003-02-21?22:39??SVM工具箱\LS_SVMlab\code_ECOC.m
?????文件????????550??2003-02-21?22:39??SVM工具箱\LS_SVMlab\code_MOC.m
?????文件????????364??2003-02-21?22:39??SVM工具箱\LS_SVMlab\code_OneVsAll.m
?????文件????????555??2003-02-21?22:39??SVM工具箱\LS_SVMlab\code_OneVsOne.m
?????文件?????????32??2003-03-20?09:24??SVM工具箱\LS_SVMlab\Contents.m
?????文件???????8174??2003-02-21?22:39??SVM工具箱\LS_SVMlab\crossvalidate.m
?????文件???????1886??2003-02-21?22:39??SVM工具箱\LS_SVMlab\deltablssvm.m
............此處省略426個(gè)文件信息
- 上一篇:Jsoup網(wǎng)絡(luò)爬蟲
- 下一篇:程序員面試白皮書.pdf
評(píng)論
共有 條評(píng)論