資源簡介
使用訓練好的模型進行物體識別,對于人、車的識別成功率極高,親測好用!
代碼片段和文件信息
#?USAGE
#?python?deep_learning_object_detection.py?--image?images/example_01.jpg?\
# --prototxt?MobileNetSSD_deploy.prototxt.txt?--model?MobileNetSSD_deploy.caffemodel
#?import?the?necessary?packages
import?numpy?as?np
import?argparse
import?cv2
#?construct?the?argument?parse?and?parse?the?arguments
ap?=?argparse.ArgumentParser()
ap.add_argument(“-i“?“--image“?required=True
help=“path?to?input?image“)
ap.add_argument(“-p“?“--prototxt“?required=True
help=“path?to?Caffe?‘deploy‘?prototxt?file“)
ap.add_argument(“-m“?“--model“?required=True
help=“path?to?Caffe?pre-trained?model“)
ap.add_argument(“-c“?“--confidence“?type=float?default=0.2
help=“minimum?probability?to?filter?weak?detections“)
args?=?vars(ap.parse_args())
#?initialize?the?list?of?class?labels?MobileNet?SSD?was
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2019-03-24?19:14??detect\
?????文件????????2865??2017-09-24?20:31??detect\deep_learning_ob
?????文件????23147564??2017-08-28?01:28??detect\MobileNetSSD_deploy.caffemodel
?????文件???????29353??2017-08-28?01:28??detect\MobileNetSSD_deploy.prototxt.txt
- 上一篇:python網絡編程
- 下一篇:tensorflow下用LSTM網絡進行時間序列預測
評論
共有 條評論