資源簡介
基于MATLAB的BP神經網絡對臭氧總量進行預測,對生產學習有很大的幫助,為科學研究提供參考,主要包括一些訓練樣本和模型的構建

代碼片段和文件信息
N2O=[0.101?0.102?0.106?0.109?0.111?0.113?0.114?0.118?0.119?0.122?0.125?0.129?0.132?0.133?...
????0.135?0.137?0.139?0.142?0.144?0.147?0.151?0.153?0.155?0.157?0.159?0.161];
CFCot=[0.091?0.096?0.102?0.108?0.113?0.117?0.124?0.131?0.136?0.141?0.147?0.152?0.156?0.16?...
????0.162?0.165?0.166?0.167?0.169?0.17?0.17?0.171?0.171?0.171?0.171?0.171];
CFCoo=[0.039?0.041?0.043?0.045?0.048?0.05?0.053?0.055?0.058?0.061?0.063?0.065?0.066?0.067?...
????0.067?0.067?0.067?0.067?0.067?0.066?0.066?0.066?0.065?0.065?0.064?0.064];
ozone=[265.7369863?264.4027397?262.1863014?264.6383562?256.2438356?259.8191781?252.5342466?254.7369863?261.5561644...
????251.5287671?257.4383562?253.6383562?258.8690248?250.4506966?247.8975649?257.2696823?255.2685?252.9157609?...
????245.837527?256.2294319?250.4585185?250.3536513?255.4165116?249.8003694?253.9006126?247.8528705];
p=[N2O;CFCot;CFCoo];?????%輸入數據矩陣
t=[ozone];???????????????%輸出數據矩陣
%對輸入矩陣r和輸出矩陣c中數據進行歸一化處理
[p1pn]=mapminmax(p);
[t1tn]=mapminmax(t);
%創建一個BP網絡,訓練函數為trainlm隱含層為三層,節點數分別為1896,傳遞函數分別為logsigpurelintansig
net=newff(pt[1896]{‘logsig‘‘purelin‘‘tansig‘}‘trainlm‘);?%建立模型
net.trainParam.show=1000;?????????????%1000次顯示一次結果
net.trainParam.lr=0.05;???????????????%學習速度為0.05
net.trainParam.epochs=5000;???????????%最大訓練輪回為5000次
net.trainParam.goal=0.0000004;????????%均方誤差為0.0000004
net=train(netp1t1);?????????????????%開始訓練,p1t1分別為輸入輸出的訓練數據
%利用原始數據(p1)對BP網絡仿真檢驗模型
an=sim(netp1);???????????????????????%用訓練好的模型進行仿真
a=mapminmax(‘reverse‘antn);?????????%把仿真得到的數據還原為原始的數量級;
%本例因樣本容量有限使用訓練數據進行測試,通常必須用新鮮數據進行測試
x=1979:2004;
newo=a(1:);
plot(xnewo‘r-o‘xozone‘b--+‘)?%繪值公路臭氧總量對比圖
legend(‘網絡輸出臭氧總量‘‘實際臭氧總量‘);
xlabel(‘年份‘);ylabel(‘DU‘);
error=abs(newo-ozone)/ozone;?????????%計算相對誤差
%利用訓練好的網絡進行預測
%用訓練好的網絡對新數據pnew進行預測時,也應作相應的處理
pnew=[0.163?0.164;0.172?0.172;0.063?0.062];??%?2005年和2006年的相關數據
pnewn=mapminmax(pnew);????%利用原始輸入數據的歸一化參數對新數據進行歸一化
anewn=sim(netpnewn);?????%利用歸一化后的數據進行仿真
anew=mapminmax(‘reverse‘anewntn);??%把仿真得到的數據還原為原始的數量級
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????12673??2018-04-14?14:15??基于MATLAB的BP神經網絡的臭氧總量預測\net.mat
?????文件????????2366??2018-04-14?14:26??基于MATLAB的BP神經網絡的臭氧總量預測\predict_ozone.m
?????文件???????84165??2018-04-14?15:04??基于MATLAB的BP神經網絡的臭氧總量預測\補充內容.docx
?????目錄???????????0??2020-09-01?13:39??基于MATLAB的BP神經網絡的臭氧總量預測\
評論
共有 條評論