資源簡介
一個徑向基網絡預測例程,在MATLAB7.0下編譯通過,可作為新手參考資源

代碼片段和文件信息
data=[-0.22914 -0.059577 -0.88853 -0.25353 -0.28422 0.096958;
-0.48264 0.63645 0.025257 -0.36327 0.47082 -0.087841;
-0.4228 0.28586 0.34107 0.048845 -0.76611 0.18407;
-0.38717 -0.46772 0.14487 -0.23132 -0.089108 -0.74088;
-0.40248 -0.5382 0.19561 -0.22917 0.24525 0.63041;
-0.47317 -0.035252 -0.18518 0.83387 0.20625 -0.051838];
x=data(:1:5);t=data(:6);
c1=x(1:3:);??%初值
%第一次分類
for?i=1:1:6
?????for?j=1:1:3
????d1(ij)=(x(i:)-c1(j:))*((x(i:)-c1(j:))‘);
end
end
%?x1???d1=[0 ???1.9658 ?1.9924;?????
?%?x2????1.9658 0 ?????1.9261;
?%?x3????1.9924 1.9261 ??0
?%?x4????1.298 1.5735 ?1.1445
?%?x5????1.7154 1.4841 ?1.8008
?%?x6????1.9779 1.9987 ?1.9443]?????
%類1(x1)
%類2(x2x5)
%類3(x3x4x6)
%中心c1=[-0.22914 ?-0.059577 ?-0.88853 ?-0.25353 ?-0.28422
%???????-0.48264 0.63645 ???0.025257 ???-0.36327 ???0.47082
%???????-0.4228 ????0.28586 ???0.34107 ???0.048845 ???-0.76611]
%第二次聚類
%新的中心c
c2=[x(1:);0.5*(x(2:)+x(5:));(x(3:)+x(4:)+x(6:))./3];
%c2=[?-0.22914 ??-0.059577 ?-0.88853 ?-0.25353 ?-0.28422
%?????-0.44256 ??0.049124 ?0.11043??? ?-0.29622 ??0.35803
%????-0.42772 ??-0.072373 ??0.10025 ??0.21713 -0.21632]
%求d2
for?i=1:1:6
?????for?j=1:1:3
????d2(ij)=(x(i:)-c2(j:))*((x(i:)-c2(j:))‘);
end
end
%x1??????d2=[0 ????1.4696 ??1.2434
%x2??????????1.9658 0.37103 ??1.3201
%x3??????????1.9924 1.4924 ??0.51694
%x4??????????1.298 0.47553 ??0.37723
%x5??????????1.7154 0.37103 ??0.63896
%x6??????????1.9779 1.3956 ??0.64385]
%聚類結果
%類1(x1)
%類2(x2x5)
%類3(x3x4x6)
%
%可知,c不再變化,故,分類結束
%
%最后的結果:c=[?-0.22914 ??-0.059577 ?-0.88853 ?-0.25353 ?-0.28422
%????????????????-0.44256 ??0.049124 ?0.11043??? ?-0.29622 ??0.35803
%????????????????-0.42772 ??-0.072373 ??0.10025 ??0.21713 -0.21632]
%??求RBF基函數的寬度delta
dd2=d2‘;
dsum=sum(dd2);
delta=[dsum(1)?0.5*(dsum(2)+dsum(5))?(dsum(2)+dsum(4)+dsum(6))./3];
%delta=[2.713 3.1912 3.275]
%據上述可知,隱含層數(采用高斯核函數)為3,輸出層為線性輸出
for?j=1:1:3
for?i=1:1:6
a(ji)=((x(i:)-c2(j:)))*((x(i:)-c2(j:))‘);
????a(ji)=(-a(ji)./delta(j));
end
end
P=1:1:6;
T=t;
%figure;subplot(221);plot(Pt);title(‘待逼近的函數樣本點‘);
%axis([16-11])
??p=a;
?r=radbas(p);
?err_goal=0.99;
?sc=1;
?net=newrb(pT‘err_goalsc);
%NEWRB?neurons?=?0?SSE?=?0.999213
Y=sim(netp);
%axis([16-0.40.4]);
figure;
plot(PT‘r‘);
hold?on;
plot(PY‘:*‘);
title(‘RBF網絡擬合曲線圖11‘);
legend(‘化驗值‘‘估計值‘);
ylabel(‘淀粉利用率(%)‘);
xlabel(‘樣本個數‘);
axis([16-11]);
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
????......R??????2563??2003-12-29?14:53??11.m
????......R??????2660??2003-12-29?14:52??22.m
????......R??????6343??2003-12-30?13:16??33.asv
????......R??????6341??2003-12-30?13:20??33.m
????......R??????7904??2005-05-15?02:17??hs_err_pid1648.log
????......R??????6123??2004-03-03?14:08??RBF建模.asv
????......R??????6112??2005-05-28?01:02??RBF建模.m
????......R??????2027??2004-01-01?02:27??RBF預測.asv
????......R??????2024??2004-03-06?07:47??RBF預測.m
????......R??????2657??2003-12-29?13:52??建模1.asv
????......R??????2653??2003-12-29?14:54??建模1.m
????......R???????951??2003-12-28?14:11??建模.asv
????......R???????951??2003-12-28?14:13??建模.m
-----------?---------??----------?-----??----
????????????????49309????????????????????13
- 上一篇:Ucsd_garch
- 下一篇:WSN DV-Hop定位的Matlab仿真代碼
評論
共有 條評論