資源簡介
廣義自回歸神經網絡MATLAB預測代碼(含原始數據,詳細注釋,結果分析)更替數據既可以適用于其他預測,可操作性強

代碼片段和文件信息
%%?案例8:GRNN的數據預測—基于廣義回歸神經網絡的貨運量預測
%%?清空環境變量
clc;
clear?all
close?all
nntwarn?off;
%%?載入數據
load?data;
%?載入數據并將數據分成訓練和預測兩類
p_train=p(1:12:);
t_train=t(1:12:);
p_test=p(13:);
t_test=t(13:);
%%?交叉驗證
desired_spread=[];
mse_max=10e20;
desired_input=[];
desired_output=[];
result_perfp=[];
indices?=?crossvalind(‘Kfold‘length(p_train)4);
h=waitbar(0‘正在尋找最優化參數....‘)
k=1;
for?i?=?1:4
????perfp=[];
????disp([‘以下為第‘num2str(i)‘次交叉驗證結果‘])
????test?=?(indices?==?i);?train?=?~test;
????p_cv_train=p_train(train:);
????t_cv_train=t_train(train:);
????p_cv_test=p_train(test:);
????t_cv_test=t_train(test:);
????p_cv_train=p_cv_train‘;
????t_cv_train=t_cv_train‘;
????p_cv_test=?p_cv_test‘;
????t_cv_test=?t_cv_test‘;
????[p_cv_trainminpmaxpt_cv_trainmintmaxt]=premnmx(p_cv_traint_cv_train);
????p_cv_test=tramnmx(p_cv_testminpmaxp);
????for?spread=0.1:0.1:2;
????????net=newgrnn(p_cv_traint_cv_trainspread);
????????waitbar(k/80h);
????????disp([‘當前spread值為‘?num2str(spread)]);
????????test_Out=sim(netp_cv_test);
????????test_Out=postmnmx(test_Outmintmaxt);
????????error=t_cv_test-test_Out;
????????disp([‘當前網絡的mse為‘num2str(mse(error))])
????????perfp=[perfp?mse(error)];
????????if?mse(error) ????????????mse_max=mse(error);
????????????desired_spread=spread;
????????????desired_input=p_cv_train;
????????????desired_output=t_cv_train;
????????end
????????k=k+1;
????end
????result_perfp(i:)=perfp;
end;
close(h)
disp([‘最佳spread值為‘num2str(desired_spread)])
disp([‘此時最佳輸入值為‘])
desired_input
disp([‘此時最佳輸出值為‘])
desired_output
%%?采用最佳方法建立GRNN網絡
net=newgrnn(desired_inputdesired_outputdesired_spread);
p_test=p_test‘;
p_test=tramnmx(p_testminpmaxp);
grnn_prediction_result=sim(netp_test);
grnn_prediction_result=postmnmx(grnn_prediction_resultmintmaxt);
grnn_error=t_test-grnn_prediction_result‘;
disp([‘GRNN神經網絡三項流量預測的誤差為‘num2str(abs(grnn_error))])
save?best?desired_input?desired_output?p_test?t_test?grnn_error?mint?maxt
?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----
?????文件???????1241??2018-05-04?17:08??案例8?GRNN的數據預測-基于廣義回歸神經網絡貨運量預測\best.mat
?????文件???????2160??2018-04-26?13:07??案例8?GRNN的數據預測-基于廣義回歸神經網絡貨運量預測\chapter8.1.m
?????文件???????2994??2018-05-04?18:42??案例8?GRNN的數據預測-基于廣義回歸神經網絡貨運量預測\chapter8.2.m
?????文件????????815??2010-01-30?20:09??案例8?GRNN的數據預測-基于廣義回歸神經網絡貨運量預測\data.mat
?????文件????4601344??2018-04-17?16:15??案例8?GRNN的數據預測-基于廣義回歸神經網絡貨運量預測\電力系統負荷預測.ppt
?????文件????????198??2010-01-30?22:29??案例8?GRNN的數據預測-基于廣義回歸神經網絡貨運量預測\運行提示.txt
?????目錄??????????0??2018-06-15?17:15??案例8?GRNN的數據預測-基于廣義回歸神經網絡貨運量預測
-----------?---------??----------?-----??----
??????????????4608752????????????????????7
評論
共有 條評論