-
大小: 2KB文件類型: .py金幣: 1下載: 0 次發(fā)布日期: 2021-06-02
- 語言: Python
- 標(biāo)簽: LSTM??DeepLEarning??
資源簡介
用 LSTM 做時(shí)間序列預(yù)測的一個(gè)小例子,詳情見我滴博文。
代碼片段和文件信息
import?numpy
import?matplotlib.pyplot?as?plt
from?pandas?import?read_csv
import?math
from?keras.models?import?Sequential
from?keras.layers?import?Dense
from?keras.layers?import?LSTM
from?sklearn.preprocessing?import?MinMaxScaler
from?sklearn.metrics?import?mean_squared_error
import??pandas?as?pd
import??os
from?keras.models?import?Sequential?load_model
#?load?the?dataset
dataframe?=?read_csv(‘./international-airline-passengers.csv‘?usecols=[1]?engine=‘python‘?skipfooter=3)
dataset?=?dataframe.values
train_size?=?int(len(dataset)?*?0.65)
scaler?=?MinMaxScaler(feature_range=(0?1))
dataset?=?scaler.fit_transform(dataset)
trainlist?=?dataset[:train_size:]
testlist?=?dataset[train_size::]
#?X?is?the?number?of?passengers?at?a?given?time?(t)?and?Y?is?the?number?of?passengers?at?the?next?time?(t?+?1).
#?convert?an?array?of?values?into?a?dataset?matrix
def?create_dataset(dataset?look_back):
#這里的look_back與timestep相同
????dataX?dataY?=?[]?[]
????for?i?in?range(len(dataset)-look_back-1):
????????a?=?dataset[i:(i+look_back)]
????????dataX.append(a)
????????dataY.append(dataset[i+look_back])
????return?numpy.array(dataX)n
評(píng)論
共有 條評(píng)論