91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 11KB
    文件類型: .m
    金幣: 1
    下載: 0 次
    發布日期: 2023-07-18
  • 語言: Matlab
  • 標簽: ARMA??定階??預測??

資源簡介

本程序是一個完整的ARMA模型的識別、參數估計以及預測的代碼,編寫語言簡單易懂,適合初學者

資源截圖

代碼片段和文件信息

clear;
%--------------------------------油價序列零均值化后的數據如下----------------------------------------%:
P=[?19.5900?14.9100?15.7400?15.4000?13.0600?19.0700?15.2800?15.8200?12.7700?12.0500...???
??11.6900?13.8500?13.8500?10.0700?9.1700?10.7900?13.4400?21.1700?18.6400?13.2100...???
??15.5400?21.9400?23.1100?18.6400?14.9400?16.9000?15.4600?11.1500?13.1300?12.4800...???
??12.9500?12.5900?10.5800?10.5800?12.3900?15.5300?13.0600?10.2200?16.3300?19.7200...
??21.3100?18.8400?24.8400?15.6700?15.5700?12.7300?13.5600?15.5400?17.2200?12.1400...
??11.0700?12.0200?11.5500?6.9200?10.3300?8.3800?12.1100?11.4600?12.7500?13.3200...
??13.0000?11.9000?11.7900?12.5500?11.8400?11.2500?11.1500?10.9900?11.7000?14.0100...
??17.5100?17.2700?16.9000?15.7900?15.4500?6.2400?16.7100?16.7700?16.6400?17.8000...
??16.8700?16.1300?15.7600?15.6600?15.5400?15.3000?15.0500?14.6900?14.3900?14.1800...
??13.70?13.66?13.27?13.56?13.14?14.19?];
F=[?19.5900?14.9100?15.7400?15.4000?13.0600?19.0700?15.2800?15.8200?12.7700?12.0500...???
??11.6900?13.8500?13.8500?10.0700?9.1700?10.7900?13.4400?21.1700?18.6400?13.2100...
??15.5400?21.9400?23.1100?18.6400?14.9400?16.9000?15.4600?11.1500?13.1300?12.4800...
??12.9500?12.5900?10.5800?10.5800?12.3900?15.5300?13.0600?10.2200?16.3300?19.7200...
??21.3100?18.8400?24.8400?15.6700?15.5700?12.7300?13.5600?15.5400?17.2200?12.1400...
??11.0700?12.0200?11.5500?6.9200?10.3300?8.3800?12.1100?11.4600?12.7500?13.3200...
??13.0000?11.9000?11.7900?12.5500?11.8400?11.2500?11.1500?10.9900?11.7000?14.0100...
??17.5100?17.2700?16.9000?15.7900?15.4500?6.2400?16.7100?16.7700?16.6400?17.8000...
??16.8700?16.1300?15.7600?15.6600?15.5400?15.3000?15.0500?14.6900?14.3900?14.180];

%----------------------由于時間序列有不平穩趨勢,進行兩次差分運算,消除趨勢性----------------------%
for?i=2:96
??Yt(i)=P(i)-P(i-1);
end
for?i=3:96
??L(i)=Yt(i)-Yt(i-1);
end
figure;
L=L(3:96);
Y=L(1:88);
plot(P);
title(‘原數據序列圖‘);
hold?on;??
plot(Y‘r‘);
title(‘兩次差分后的序列圖和原數對比圖‘);??
%--------------------------------------對數據標準化處理----------------------------------------------%
Ux=sum(Y)/88?%?求序列均值
yt=Y-Ux;
b=0;
for?i=1:88
??b=yt(i)^2/88+b;
end
v=sqrt(b)?%?求序列方差
Y=(Y-Ux)/v;?%?標準化處理公式
f=F(1:88);
t=1:88;
figure;
plot(tftY‘r‘)
title(‘原始數據和標準化處理后對比圖‘);
xlabel(‘時間t‘)ylabel(‘油價y‘);
legend(‘原始數據?F?‘‘標準化后數據Y?‘);???
%--------------------------------------對數據標準化處理----------------------------------------------%


%------------------------檢驗預處理后的數據是否符合AR建模要求,計算自相關和偏相關系數---------------%
??%---------------------------------------計算自相關系數-----------------------------------%
R0=0;
for?i=1:88??
??R0=Y(i)^2/88+R0;
end
R0
for?k=1:20
??R(k)=0;
??for?i=k+1:88
??R(k)=Y(i)*Y(i-k)/88+R(k);
??end
??R?%自協方差函數R???
end
x=R/R0?%自相關系數x
figure;
plot(x)
title(‘自相關系數分析圖‘);??
%-----------------------------------計算自相關系數-------------------------------------%
%-----------------------解Y-W方程,其系數矩陣是Toeplit矩陣。求得偏相關函數X-----------------------%
X1=x(1);
X11=x(1)/1;
B=[x(1)?x(2)]‘;
x2=[1?x(1)];

評論

共有 條評論