資源簡介
用差分進(jìn)化算法對極限學(xué)習(xí)機(jī)進(jìn)行優(yōu)化,得到的極限學(xué)習(xí)機(jī)的診斷精度有了明顯提高。
代碼片段和文件信息
function?[TrainingTimeTestingTimeTrainingAccuracy?TestingAccuracy]=ELM_DE(TrainingData_File?TestingData_File?Elm_Type?NumberofHiddenNeurons?ActivationFunction)
%?minimization?of?a?user-supplied?function?with?respect?to?x(1:D)
%?using?the?differential?evolution?(DE)?algorithm?of?Rainer?Storn
%?(http://www.icsi.berkeley.edu/~storn/code.html)
%?
%?Special?thanks?go?to?Ken?Price?(kprice@solano.community.net)?and
%?Arnold?Neumaier?(http://solon.cma.univie.ac.at/~neum/)?for?their
%?valuable?contributions?to?improve?the?code.
%?
%?Strategies?with?exponential?crossover?further?input?variable
%?tests?and?arbitrary?function?name?implemented?by?Jim?Van?Zandt?
%??12/97.
%
%?Output?arguments:
%?----------------
%?bestmem????????parameter?vector?with?best?solution
%?bestv
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????目錄???????????0??2014-07-12?21:03??DE_ELM差分進(jìn)化\
?????文件???????19022??2014-07-09?14:28??DE_ELM差分進(jìn)化\ELM_DE.m
?????文件????????1777??2014-07-08?18:53??DE_ELM差分進(jìn)化\ELM_X.m
評論
共有 條評論