91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 19KB
    文件類型: .rar
    金幣: 2
    下載: 0 次
    發布日期: 2021-05-12
  • 語言: 其他
  • 標簽: RN??LST??TensorFlo??????

資源簡介

本工程為基于TensorFlow實現的以多維特征作為輸入且輸出同樣為多維的RNN(LSTM)模型。

資源截圖

代碼片段和文件信息

#coding=utf-8

import?pandas?as?pd
import?numpy?as?np
import?matplotlib.pyplot?as?plt
import?tensorflow?as?tf
import?itertools
import?csv

def?sub_list(list1list2):
????num1?=?len(list1)
????num2?=?len(list2)
????list3?=?[]
????if?num1?==?num2:
????????for?i?in?range(num1):
????????????list3.append((list1[i])?-?int(list2[i]))
????????return?list3
????else:
????????print(‘列表1長度?=‘?num1)
????????print(‘列表2長度?=‘?num2)
????????print(‘列表長度不相同,無法相加‘)
????????return?-1

#獲取訓練集
def?get_train_data(batch_size=60time_step=20train_begin=0train_end=90):
????batch_index=[]
????data_train=data[train_begin:train_end]
????#normalized_train_data=(data_train-np.mean(data_trainaxis=0))/np.std(data_trainaxis=0)??#標準化
????normalized_train_data=data_train
????train_xtrain_y=[][]???#訓練集
????for?i?in?range(len(normalized_train_data)-time_step):
???????if?i?%?batch_size==0:
???????????batch_index.append(i)
???????x=normalized_train_data[i:i+time_step:input_size]
???????y=normalized_train_data[i:i+time_stepinput_size:]
???????train_x.append(x.tolist())
???????train_y.append(y.tolist())
????batch_index.append((len(normalized_train_data)-time_step))
????return?batch_indextrain_xtrain_y

#獲取測試集
def?get_test_data(time_step=20test_begin=5800):
????print(‘time_step?is?‘?time_step)
????print(‘train_end?is?‘?train_end)
????data_test=data[train_end:]
????normalized_test_data?=?data_test
????print(‘normalized_test_data?len?is‘len(normalized_test_data))
????#mean=np.mean(data_testaxis=0)
????#std=np.std(data_testaxis=0)
????#normalized_test_data=(data_test-mean)/std??#標準化
????size=(len(normalized_test_data)+time_step-1)//time_step??#有size個sample
????print(‘size?is?‘?size)
????test_xtest_y=[][]
????for?i?in?range(size-1):
????????x=normalized_test_data[i*time_step:(i+1)*time_step:input_size]
????????y=normalized_test_data[i*time_step:(i+1)*time_stepinput_size:]
????????test_x.append(x.tolist())
????????test_y.extend(y.tolist())
????test_x.append((normalized_test_data[(i+1)*time_step::input_size:]).tolist())
????test_y.extend((normalized_test_data[(i+1)*time_step:input_size:]).tolist())

????‘‘‘
????print(‘test_x?len?is‘len(test_x))
????print(‘test_x[7]?len?is‘len(test_x[7]))
????print(‘test_x[0][0]?len?is‘?len(test_x[0][0]))
????print(‘test_y?len?is‘len(test_y))
????print(‘test_y[0]?len?is‘?len(test_y[0]))
????print(‘len(test_y)/output_size?is?‘len(test_y)/output_size)
????print(test_y)
????exit()
????‘‘‘
????#return?meanstdtest_xtest_y
????return?test_x?test_y

#?——————————————————定義神經網絡變量——————————————————
def?lstm(X):
????batch_size?=?tf.shape(X)[0]
????time_step?=?tf.shape(X)[1]
????w_in?=?weights[‘in‘]
????b_in?=?biases[‘in‘]
????input?=?tf.reshape(X?[-1?input_size])??#?需要將tensor轉成2維進行計算,計算后的結果作為隱藏層的輸入
????input_rnn?=?tf.matmul(input?w_in)?+?b_in
????input_rnn?=?tf.reshape(input_rnn?[-1?time_step?rnn_unit])??#?將tensor轉成3維,作為lstm?cell的輸入
????cell?=?tf.nn.rn

?屬性????????????大小?????日期????時間???名稱
-----------?---------??----------?-----??----

?????文件?????463838??2018-08-03?15:41??TF_RNN(LSTM)\data.csv

?????文件??????12216??2018-08-03?15:30??TF_RNN(LSTM)\readme_lyy.docx

?????文件???????9975??2018-08-03?15:43??TF_RNN(LSTM)\RNN.py

?????目錄??????????0??2018-08-03?15:44??TF_RNN(LSTM)

-----------?---------??----------?-----??----

???????????????486029????????????????????4


評論

共有 條評論