資源簡介
data
linear filtering problem [Kalman60]. Since that time, due in large part to advances in digital
computing, the
Kalman filter
has been the subject of extensive research and application,
particularly in the area of autonomous or assisted navigation. A very “friendly” introduction to the
general idea of the Kalman filter can be found in Chapter 1 of [Maybeck79], while a more complete
introductory discussion can be found in [Sorenson70], which also contains some interesting
historical narrative. More extensive references include [Gelb74; Grewal93; Maybeck79; Lewis86;
Brown92; Jacobs93].

代碼片段和文件信息
function?[FHQRinitx?initV]?=?AR_to_SS(coef?C?y)
%
%?Convert?a?vector?auto-regressive?model?of?order?k?to?state-space?form.
%?[FHQR]?=?AR_to_SS(coef?C?y)
%?
%?X(i)?=?A(1)?X(i-1)?+?...?+?A(k)?X(i-k+1)?+?v?where?v?~?N(0?C)
%?and?A(i)?=?coef(::i)?is?the?weight?matrix?for?i?steps?ago.
%?We?initialize?the?state?vector?with?[y(:k)‘?...?y(:1)‘]‘?since
%?the?state?vector?stores?[X(i)?...?X(i-k+1)]‘?in?order.
[s?s2?k]?=?size(coef);?%?s?is?the?size?of?the?state?vector
bs?=?s?*?ones(1k);?%?size?of?each?block
F?=?zeros(s*k);
for?i=1:k
???F(block(1bs)?block(ibs))?=?coef(::i);
end
for?i=1:k-1
??F(block(i+1bs)?block(ibs))?=?eye(s);
end
H?=?zeros(1*s?k*s);
%?we?get?to?see?the?most?recent?component?of?the?state?vector?
H(block(1bs)?block(1bs))?=?eye(s);?
%for?i=1:k
%??H(block(1bs)?block(ibs))?=?eye(s);
%end
Q?=?zeros(k*s);
Q(block(1bs)?block(1bs))?=?C;
R?=?zeros(s);
initx?=?zeros(k*s?1);
for?i=1:k
??initx(block(ibs))?=?y(:?k-i+1);?%?concatenate?the?first?k?observation?vectors
end
initV?=?zeros(k*s);?%?no?uncertainty?about?the?state?(since?perfectly?observable)
?屬性????????????大小?????日期????時(shí)間???名稱
-----------?---------??----------?-----??----
?????目錄??????????0??2005-10-17?23:27??kalman濾波工具箱
?????目錄??????????0??2005-10-17?23:27??kalman濾波工具箱\KalmanAll
????..AD...?????????0??2005-10-17?23:27??kalman濾波工具箱\KalmanAll\Kalman
?????文件???????1107??2002-05-29?08:59??kalman濾波工具箱\KalmanAll\Kalman\AR_to_SS.m
?????文件????????425??2002-05-29?08:59??kalman濾波工具箱\KalmanAll\Kalman\convert_to_lagged_form.m
?????文件????????354??2002-05-29?08:59??kalman濾波工具箱\KalmanAll\Kalman\ensure_AR.m
?????文件???????1045??2002-05-29?08:59??kalman濾波工具箱\KalmanAll\Kalman\eval_AR_perf.m
?????文件???????2899??2002-05-29?08:59??kalman濾波工具箱\KalmanAll\Kalman\kalman_filter.m
?????文件???????2392??2002-11-01?16:32??kalman濾波工具箱\KalmanAll\Kalman\kalman_forward_backward.m
?????文件???????1584??2002-05-29?08:59??kalman濾波工具箱\KalmanAll\Kalman\kalman_smoother.m
?????文件???????1840??2002-05-29?08:59??kalman濾波工具箱\KalmanAll\Kalman\kalman_update.m
?????文件???????1022??2002-10-23?08:17??kalman濾波工具箱\KalmanAll\Kalman\learning_demo.m
?????文件????????819??2002-05-29?08:59??kalman濾波工具箱\KalmanAll\Kalman\learn_AR.m
?????文件????????687??2002-05-29?08:59??kalman濾波工具箱\KalmanAll\Kalman\learn_AR_diagonal.m
?????文件???????5498??2002-05-29?08:59??kalman濾波工具箱\KalmanAll\Kalman\learn_kalman.m
?????文件????????485??2004-06-07?07:39??kalman濾波工具箱\KalmanAll\Kalman\README.txt
?????文件????????535??2003-01-18?13:47??kalman濾波工具箱\KalmanAll\Kalman\README.txt~
?????文件???????1797??2003-01-24?11:36??kalman濾波工具箱\KalmanAll\Kalman\sample_lds.m
?????文件???????1199??2002-05-29?08:59??kalman濾波工具箱\KalmanAll\Kalman\smooth_update.m
?????文件????????579??2002-05-29?08:59??kalman濾波工具箱\KalmanAll\Kalman\SS_to_AR.m
?????文件?????????28??2005-06-08?18:56??kalman濾波工具箱\KalmanAll\Kalman\testKalman.m
?????文件???????1960??2003-01-18?14:49??kalman濾波工具箱\KalmanAll\Kalman\tracking_demo.m
????..AD...?????????0??2005-10-17?23:27??kalman濾波工具箱\KalmanAll\KPMstats
?????文件????????267??2005-05-03?13:08??kalman濾波工具箱\KalmanAll\KPMstats\#histCmpChi2.m#
?????文件???????1955??2005-04-25?19:29??kalman濾波工具箱\KalmanAll\KPMstats\beta_sample.m
?????文件????????199??2005-04-25?19:29??kalman濾波工具箱\KalmanAll\KPMstats\chisquared_histo.m
?????文件???????1326??2005-04-25?19:29??kalman濾波工具箱\KalmanAll\KPMstats\chisquared_prob.m
?????文件???????1389??2005-04-25?19:29??kalman濾波工具箱\KalmanAll\KPMstats\chisquared_readme.txt
?????文件???????2127??2005-04-25?19:29??kalman濾波工具箱\KalmanAll\KPMstats\chisquared_table.m
?????文件???????5884??2005-04-25?19:29??kalman濾波工具箱\KalmanAll\KPMstats\clg_Mstep.m
............此處省略270個(gè)文件信息
評(píng)論
共有 條評(píng)論