91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 5KB
    文件類型: .py
    金幣: 1
    下載: 1 次
    發布日期: 2021-05-13
  • 語言: Python
  • 標簽: LSTM??一維預測??

資源簡介

采用LSTM循環神經網絡對時序數據進行預測,根據評價指標對測試集進行誤差計算,具有較好的預測精度

資源截圖

代碼片段和文件信息

#?-*-?coding:?utf-8?-*-
“““
Created?on?Fri?Nov?17?11:09:14?2017

@author:?Administrator

“““
import?time
import?numpy
from?math?import?sqrt
from?numpy?import?concatenate
from?matplotlib?import?pyplot
from?pandas?import?read_csv
from?pandas?import?Dataframe
from?pandas?import?concat
from?sklearn.preprocessing?import?MinMaxScaler
from?sklearn.preprocessing?import?LabelEncoder
from?sklearn.metrics?import?mean_squared_error
from?keras.models?import?Sequential
from?keras.layers?import?DenseActivationdropout
from?keras.layers?import?LSTM


#?convert?series?to?supervised?learning?將序列轉換成監督學習問題
def?series_to_supervised(data?n_in=1?n_out=1?dropnan=True):
????n_vars?=?1?if?type(data)?is?list?else?data.shape[1]
????df?=?Dataframe(data)
????cols?names?=?list()?list()
????#?input?sequence?(t-n?...?t-1)
????for?i?in?range(n_in?0?-1):
????????cols.append(df.shift(i))
????????names?+=?[(‘var%d(t-%d)‘?%?(j?+?1?i))?for?j?in?range(n_vars)]


????#?forecast?sequence?(t?t+1?...?t+n)
????for?i?in?range(0?n_out):
????????cols.append(df.shift(-i))
????????if?i?==?0:
????????????names?+=?[(‘var%d(t)‘?%?(j?+?1))?for?j?in?range(n_vars)]
????????else:
????????????names?+=?[(‘var%d(t+%d)‘?%?(j?+?1?i))?for?j?in?range(n_vars)]
????#?put?it?all?together
????agg?=?concat(cols?axis=1)
????agg.columns?=?names
????#?drop?rows?with?NaN?values
????if?dropnan:
????????agg.dropna(inplace=True)
????return?agg


#?load?dataset
dataset?=?read_csv(‘tuoluoyi-A-kewen1-csv.csv‘?header=0?index_col=0)??#header?第一列為編號??index_col為取索引的參數
values?=?dataset.values
pyplot.figure(1)
pyplot.plot(values)?
pyplot.show()
#?integer?encode?direction
#encoder?=?LabelEncoder()???#簡單來說?LabelEncoder?是對不連續的數字或者文本進行編號
#values[:?4]?=?encoder.fit_transform(values[:?4])??#將第四列進行文本編碼
#?ensure?all?data?is?float
values?=?values.astype(‘float32‘)??#轉化為浮點型
#?normalize?features
scaler?=?MinMaxScaler(feature_range=(0?1))????#歸一化處理
scaled?=?scaler.fit_transform(values)
#?frame?as?supervised?learning
reframed?=?series_to_supervised(scaled?1?1)??#轉化為監督學習??設計預測維數
#?drop?columns?we?don‘t?want?to?predict
#reframed.drop(reframed.columns[[567]]?axis=1?inplace=True)?#reframed.drop?刪除不預測的列
print(reframed.head())

#?split?into?train?and?test?sets
values?=?reframed.values
n_train_hours?=?41000
train?=?values[:n_train_hours?:]
test?=?values[n_train_hours:?:]
#?split?into?input?and?outputs
train_X?train_y?=?train[:?:-1]

評論

共有 條評論