91av视频/亚洲h视频/操亚洲美女/外国一级黄色毛片 - 国产三级三级三级三级

  • 大小: 47KB
    文件類型: .m
    金幣: 1
    下載: 0 次
    發布日期: 2021-06-04
  • 語言: Matlab
  • 標簽: 魯棒??H-infinity??

資源簡介

該程序的主要目的是給出魯棒H無窮控制器的設計過程,并通過繪圖形象反映仿真結果,具有較高的參考價值。

資源截圖

代碼片段和文件信息

%__________________________________________________________
%
%??tank_DKiteration.m
%
%??Perform?an?H_infinity/mu?synthesis?design?for?a?process
%??tank?system.???The?main?purpose?of?this?code?is?to
%??demonstrate?the?use?of?the?software?for?robust?H_infinity
%??control?design.
%
%??Requires?version?3.0?(Sept/2004)?of?the?robust?control
%??toolbox.
%
%??Roy?Smith??23/May/2006
%
%__________________________________________________________


%??The?system?consists?of?a?water?tank?with?controlled?hot?and
%??cold?water?inlet?flows.??An?outlet?flow?is?located?at?the
%??bottom?of?the?tank.???The?measured?variables?of?interest
%??are?the?level?and?temperature?of?the?water?in?the?tank.

%??The?tank?system?and?the?perturbation?model?is?described?in:
%
%???“Model?validation?for?robust?control:?an?experimental?process
%???control?application“??Roy?S.?Smith??Automatica?Vol.?31?
%???No.?11?pp.?1637-1647?1995.

%??_________________________________________________________

clear?all

%??Nominal?model:

%??Physical?constants:??(scaled?dimensionless?units)

A1?=?91.4;??????%?tankcross-sectional?area
alpha?=?1.34;???%?exit?flow?gain
beta?=?0.6;?????%?exit?flow?bias
th?=?1.0;???????%?hot?water?temperature
tc?=?0.0;???????%?cold?water?temperature

act_tc?=?0.05;??%?actuator?time?constant

%??Nominal?operating?point:

h1nom?=?0.47;
t1nom?=?0.5;

%??Linearized?model?with?
%?????input?variables:??[fh;?fc]
%?????state?variables:??[E;?f1]
%?????output?variables:?[h1;?t1]

A_tank?=?[-(1+beta/h1nom)/(A1*alpha)?beta*t1nom/(A1*h1nom);
??????0???-1/(A1*alpha)?];
????
B_tank?=?[th/A1??????????tc/A1;
?????1/(A1*alpha)??1/(A1*alpha)];
???
C_tank?=?[0????????alpha;
?????1/h1nom?-t1nom*alpha/h1nom];

D_tank?=?[0?0;
?????0?0];
???
P_tank?=?ss(A_tankB_tankC_tankD_tank);

%???Actuator?model.

%???We?use?a?model?of?the?form:??exp(-theta*s)*k/(tau*s?+?1)
%???with??0.8?<=?k?<=?1.2??1.5?<=?tau?<=?2.5?and?0.5?<=?theta?<=?1.0.
%???A?second?order?Pade?approximation?models?the?delay.

s?=?tf(‘s‘);
P_act?=?(s^2?-?8*s?+?21.3)/((2*s+1)*(s^2+8*s+21.3));

%???Examine?the?frequency?response.

omega?=?logspace(-42250);
P_tank_f?=?frd(P_tankomega);
P_act_f?=?frd(P_actomega);

figure(1)
subplot(211)???????????
loglog(abs(P_tank_f(11))abs(P_tank_f(12))...
???????abs(P_tank_f(21))abs(P_tank_f(22))...
???????abs(P_act_f));
axis([min(omega)max(omega)1e-510])
grid
legend(‘h1?<-?fh‘‘h1?<-?fc‘‘t1?<-?fh‘‘t1?<-?fc‘‘P_{act}‘)
xlabel(‘Frequency?[rad/sec]‘)
ylabel(‘Magnitude‘)

r2d?=?180/pi;

subplot(212)
semilogx(r2d*unwrap(angle(P_tank_f(11)))r2d*unwrap(angle(P_tank_f(12)))...
???????r2d*unwrap(angle(P_tank_f(21)))r2d*unwrap(angle(P_tank_f(22)))...
???????r2d*unwrap(angle(P_act_f)))
grid
xlabel(‘Frequency?[rad/sec]‘)
ylabel(‘Phase?[deg]‘)
title(‘Nominal?model‘)

%???--------------?Perturbation?weights?---------------------

%???Actuator?model??(see?Laugh

評論

共有 條評論